Spaces:
Sleeping
Sleeping
shengqiangShi
commited on
Commit
·
e4dee6a
1
Parent(s):
15450dc
Application file
Browse files- app.py +82 -32
- images/animals.png +0 -0
- images/dark_cell.png +0 -0
- images/purple cell.png +0 -0
- requirements.txt +3 -1
app.py
CHANGED
@@ -2,6 +2,29 @@ import torch
|
|
2 |
import gradio as gr
|
3 |
from transformers import Owlv2Processor, Owlv2ForObjectDetection
|
4 |
import spaces
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
# Use GPU if available
|
7 |
if torch.cuda.is_available():
|
@@ -11,55 +34,82 @@ else:
|
|
11 |
|
12 |
model = Owlv2ForObjectDetection.from_pretrained("google/owlv2-base-patch16-ensemble").to(device)
|
13 |
processor = Owlv2Processor.from_pretrained("google/owlv2-base-patch16-ensemble")
|
|
|
|
|
|
|
14 |
|
15 |
@spaces.GPU
|
16 |
-
def query_image(img, text_queries, score_threshold):
|
17 |
-
text_queries = text_queries
|
18 |
text_queries = text_queries.split(",")
|
19 |
-
|
20 |
size = max(img.shape[:2])
|
21 |
target_sizes = torch.Tensor([[size, size]])
|
22 |
inputs = processor(text=text_queries, images=img, return_tensors="pt").to(device)
|
23 |
|
24 |
with torch.no_grad():
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
boxes, scores, labels = results[0]["boxes"], results[0]["scores"], results[0]["labels"]
|
31 |
|
|
|
|
|
|
|
32 |
result_labels = []
|
|
|
33 |
for box, score, label in zip(boxes, scores, labels):
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
|
41 |
description = """
|
42 |
-
|
43 |
-
introduced in <a href="https://arxiv.org/abs/2306.09683">Scaling Open-Vocabulary Object Detection</a>.
|
44 |
-
\n\n Compared to OWLVIT, OWLv2 performs better both in yield and performance (average precision).
|
45 |
-
You can use OWLv2 to query images with text descriptions of any object.
|
46 |
-
To use it, simply upload an image and enter comma separated text descriptions of objects you want to query the image for. You
|
47 |
-
can also use the score threshold slider to set a threshold to filter out low probability predictions.
|
48 |
-
\n\nOWL-ViT is trained on text templates,
|
49 |
-
hence you can get better predictions by querying the image with text templates used in training the original model: e.g. *"photo of a star-spangled banner"*,
|
50 |
-
*"image of a shoe"*. Refer to the <a href="https://arxiv.org/abs/2103.00020">CLIP</a> paper to see the full list of text templates used to augment the training data.
|
51 |
-
\n\n<a href="https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/zeroshot_object_detection_with_owlvit.ipynb">Colab demo</a>
|
52 |
"""
|
53 |
demo = gr.Interface(
|
54 |
-
query_image,
|
55 |
-
inputs=[gr.Image(), "
|
56 |
-
outputs=
|
57 |
-
title="Zero-Shot Object Detection
|
58 |
-
description=
|
59 |
examples=[
|
60 |
-
["
|
61 |
-
["
|
62 |
-
["
|
|
|
63 |
],
|
64 |
)
|
65 |
-
|
|
|
|
2 |
import gradio as gr
|
3 |
from transformers import Owlv2Processor, Owlv2ForObjectDetection
|
4 |
import spaces
|
5 |
+
import numpy as np
|
6 |
+
from PIL import Image
|
7 |
+
import io
|
8 |
+
import random
|
9 |
+
from transformers import SamModel, SamProcessor
|
10 |
+
|
11 |
+
|
12 |
+
def apply_colored_masks_on_image(image, masks):
|
13 |
+
if not isinstance(image, Image.Image):
|
14 |
+
image = Image.fromarray(image.astype('uint8'), 'RGB')
|
15 |
+
|
16 |
+
image_rgba = image.convert("RGBA")
|
17 |
+
|
18 |
+
for i in range(masks.shape[0]):
|
19 |
+
mask = masks[i].squeeze().cpu().numpy()
|
20 |
+
mask_image = Image.fromarray((mask * 255).astype(np.uint8), 'L')
|
21 |
+
color = tuple([random.randint(0, 255) for _ in range(3)] + [128])
|
22 |
+
colored_mask = Image.new("RGBA", image.size, color)
|
23 |
+
colored_mask.putalpha(mask_image)
|
24 |
+
image_rgba = Image.alpha_composite(image_rgba, colored_mask)
|
25 |
+
|
26 |
+
return image_rgba
|
27 |
+
|
28 |
|
29 |
# Use GPU if available
|
30 |
if torch.cuda.is_available():
|
|
|
34 |
|
35 |
model = Owlv2ForObjectDetection.from_pretrained("google/owlv2-base-patch16-ensemble").to(device)
|
36 |
processor = Owlv2Processor.from_pretrained("google/owlv2-base-patch16-ensemble")
|
37 |
+
model_sam = SamModel.from_pretrained("facebook/sam-vit-huge").to(device)
|
38 |
+
processor_sam = SamProcessor.from_pretrained("facebook/sam-vit-huge")
|
39 |
+
|
40 |
|
41 |
@spaces.GPU
|
42 |
+
def query_image(img, text_queries, score_threshold=0.5):
|
|
|
43 |
text_queries = text_queries.split(",")
|
|
|
44 |
size = max(img.shape[:2])
|
45 |
target_sizes = torch.Tensor([[size, size]])
|
46 |
inputs = processor(text=text_queries, images=img, return_tensors="pt").to(device)
|
47 |
|
48 |
with torch.no_grad():
|
49 |
+
model_outputs = model(**inputs)
|
50 |
+
model_outputs.logits = model_outputs.logits.cpu()
|
51 |
+
model_outputs.pred_boxes = model_outputs.pred_boxes.cpu()
|
52 |
+
results = processor.post_process_object_detection(outputs=model_outputs, target_sizes=target_sizes)
|
53 |
+
|
54 |
boxes, scores, labels = results[0]["boxes"], results[0]["scores"], results[0]["labels"]
|
55 |
|
56 |
+
|
57 |
+
img_pil = Image.fromarray(img.astype('uint8'), 'RGB')
|
58 |
+
|
59 |
result_labels = []
|
60 |
+
result_boxes = []
|
61 |
for box, score, label in zip(boxes, scores, labels):
|
62 |
+
if score >= score_threshold:
|
63 |
+
box = [int(i) for i in box.tolist()]
|
64 |
+
label_text = text_queries[label.item()]
|
65 |
+
result_labels.append((box, label_text))
|
66 |
+
result_boxes.append(box)
|
67 |
+
|
68 |
+
input_boxes_for_sam = [result_boxes]
|
69 |
+
sam_image = generate_image_with_sam(np.array(img_pil), input_boxes_for_sam)
|
70 |
+
|
71 |
+
return sam_image,result_labels
|
72 |
+
|
73 |
+
|
74 |
+
def generate_image_with_sam(img, boxes):
|
75 |
+
img_pil = Image.fromarray(img.astype('uint8'), 'RGB')
|
76 |
+
inputs = processor_sam(img_pil, return_tensors="pt").to(device)
|
77 |
+
|
78 |
+
image_embeddings = model_sam.get_image_embeddings(inputs["pixel_values"])
|
79 |
+
|
80 |
+
inputs = processor_sam(img_pil, input_boxes=boxes, return_tensors="pt").to(device)
|
81 |
+
inputs["input_boxes"].shape
|
82 |
+
inputs.pop("pixel_values", None)
|
83 |
+
inputs.update({"image_embeddings": image_embeddings})
|
84 |
+
|
85 |
+
with torch.no_grad():
|
86 |
+
outputs = model_sam(**inputs, multimask_output=False)
|
87 |
+
|
88 |
+
masks = processor_sam.image_processor.post_process_masks(outputs.pred_masks.cpu(), inputs["original_sizes"].cpu(), inputs["reshaped_input_sizes"].cpu())
|
89 |
+
scores = outputs.iou_scores
|
90 |
+
print(type(scores))
|
91 |
+
print(scores.shape if hasattr(scores, 'shape') else scores)
|
92 |
+
|
93 |
+
|
94 |
+
SAM_image = apply_colored_masks_on_image(img_pil, masks[0])
|
95 |
+
return SAM_image
|
96 |
|
97 |
|
98 |
description = """
|
99 |
+
Split anythings
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
"""
|
101 |
demo = gr.Interface(
|
102 |
+
fn=query_image,
|
103 |
+
inputs=[gr.Image(), gr.Textbox(label="Query Text"), gr.Slider(0, 1, value=0.5, label="Score Threshold")],
|
104 |
+
outputs=gr.AnnotatedImage(),
|
105 |
+
title="Zero-Shot Object Detection SV3",
|
106 |
+
description="This interface demonstrates object detection using zero-shot object detection and SAM for image segmentation.",
|
107 |
examples=[
|
108 |
+
["images/purple cell.png", "purple cells", 0.11],
|
109 |
+
["images/dark_cell.png", "gray cells", 0.1],
|
110 |
+
["images/animals.png", "Rabbit,Squirrel,Parrot,Hedgehog,Turtle,Ladybug,Chick,Frog,Butterfly,Snail,Mouse", 0.1],
|
111 |
+
|
112 |
],
|
113 |
)
|
114 |
+
|
115 |
+
demo.launch()
|
images/animals.png
ADDED
images/dark_cell.png
ADDED
images/purple cell.png
ADDED
requirements.txt
CHANGED
@@ -3,4 +3,6 @@ torch>=1.7.0
|
|
3 |
torchvision>=0.8.1
|
4 |
git+https://github.com/huggingface/transformers.git
|
5 |
scipy
|
6 |
-
spaces
|
|
|
|
|
|
3 |
torchvision>=0.8.1
|
4 |
git+https://github.com/huggingface/transformers.git
|
5 |
scipy
|
6 |
+
spaces
|
7 |
+
matplotlib
|
8 |
+
pillow
|