File size: 5,588 Bytes
9f9752e
 
 
 
 
 
 
f2467d5
0525e06
f2467d5
9f9752e
 
0525e06
 
9f9752e
 
 
 
f2467d5
9f9752e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c74fa4c
 
0b96e40
 
892985e
a10a711
 
9f9752e
 
 
 
 
 
 
 
 
 
0b96e40
 
9f9752e
 
 
 
 
 
 
 
c74fa4c
 
9f9752e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b96e40
 
 
 
 
 
 
 
 
 
 
 
 
9f9752e
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
from PIL import Image
import gradio as gr
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
import torch
torch.backends.cuda.matmul.allow_tf32 = True
import gc

model_id = "andite/pastel-mix"
model_url = "https://huggingface.co/andite/pastel-mix/blob/main/pastelmix-better-vae.ckpt"

controlnet = ControlNetModel.from_pretrained("ioclab/connow", torch_dtype=torch.float16, use_safetensors=True)

pipe = StableDiffusionControlNetPipeline.from_from_ckpt(
    model_url,
    controlnet=controlnet,
    torch_dtype=torch.float16,
    safety_checker=None,
)
pipe = pipe.to("cuda")
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)

pipe.enable_xformers_memory_efficient_attention()
pipe.enable_model_cpu_offload()
pipe.enable_attention_slicing()

def infer(
        prompt,
        negative_prompt,
        conditioning_image,
        num_inference_steps=30,
        size=768,
        guidance_scale=7.0,
        seed=1234,
        ill=0.6,
):

    conditioning_image_raw = Image.fromarray(conditioning_image)
    conditioning_image = conditioning_image_raw.convert('L')
    w = conditioning_image.width
    h = conditioning_image.height
    ratio = 768 / max(w, h)
    w = int(w * ratio)
    h = int(h * ratio)
    g_cpu = torch.Generator()

    if seed == -1:
        generator = g_cpu.manual_seed(g_cpu.seed())
    else:
        generator = g_cpu.manual_seed(seed)

    output_image = pipe(
        prompt,
        conditioning_image,
        height=h,
        width=w,
        num_inference_steps=num_inference_steps,
        generator=generator,
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale,
        controlnet_conditioning_scale=ill,
        
    ).images[0]

    del conditioning_image, conditioning_image_raw

    gc.collect()

    return output_image

with gr.Blocks() as demo:
    gr.Markdown(
        """
    # ControlNet on Brightness

    This is a demo on ControlNet based on brightness.
    """)

    with gr.Row():
        with gr.Column():
            prompt = gr.Textbox(
                label="Prompt",
            )
            negative_prompt = gr.Textbox(
                label="Negative Prompt",
            )
            conditioning_image = gr.Image(
                label="Conditioning Image",
            )
            with gr.Accordion('Advanced options', open=False):
                with gr.Row():
                    num_inference_steps = gr.Slider(
                        10, 40, 20,
                        step=1,
                        label="Steps",
                    )
                    size = gr.Slider(
                        256, 768, 512,
                        step=128,
                        label="Size",
                    )
                with gr.Row():
                    guidance_scale = gr.Slider(
                        label='Guidance Scale',
                        minimum=0.1,
                        maximum=30.0,
                        value=7.0,
                        step=0.1
                    )
                    seed = gr.Slider(
                        label='Seed',
                        value=-1,
                        minimum=-1,
                        maximum=2147483647,
                        step=1,
                        # randomize=True
                    )
                with gr.Row():
                    ill = gr.Slider(
                        label='controlnet_ILL_scale',
                        minimum=0,
                        maximum=1,
                        value=0.6,
                        step=0.05
                    )
                    
            submit_btn = gr.Button(
                value="Submit",
                variant="primary"
            )
        with gr.Column(min_width=300):
            output = gr.Image(
                label="Result",
            )

    submit_btn.click(
        fn=infer,
        inputs=[
            prompt, negative_prompt, conditioning_image, num_inference_steps, size, guidance_scale, seed,ill,
        ],
        outputs=output
    )
    gr.Examples(
        examples=[
            ["masterpiece, best quality, High contrast,A bamboo forest, a stream,The rising sun, colorful,", "((nsfw)),(blush),(bare),(worst quality:2, low quality:2),(zombie, sketch, interlocked fingers), greyscale", "./conditioning_images/ty1.jpg","./conditioning_images/tyt1.jpg"],
                        ["masterpiece, best quality, High contrast,A bamboo forest, a stream,The rising sun, colorful,", "((nsfw)),(blush),(bare),(worst quality:2, low quality:2),(zombie, sketch, interlocked fingers), greyscale", "./conditioning_images/ty2.jpg","./conditioning_images/tyt2.jpg"],

                    ],
        inputs=[
            prompt, negative_prompt, conditioning_image
        ],
        outputs=output,
        fn=infer,
        cache_examples=True,
    )
    gr.Markdown(
        """
    * [Dataset](https://huggingface.co/datasets/ioclab/grayscale_image_aesthetic_3M) Note that this was handled extra, and a preview version of the processing is here
      [Anime Dataset](https://huggingface.co/datasets/ioclab/lighttestout)  [Nature Dataset] (https://huggingface.co/datasets/ioclab/light)
    * [Diffusers model](https://huggingface.co/ioclab/connow/tree/main), [Web UI model](https://huggingface.co/ioclab/control_v1u_sd15_illumination_webui)
    * [Training Report](https://huggingface.co/ioclab/control_v1u_sd15_illumination_webui), [Doc(Chinese)](https://aigc.ioclab.com/sd-showcase/light_controlnet.html)
    """)

demo.launch()