Spaces:
Running
Running
create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,560 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Import necessary libraries
|
2 |
+
import math # For mathematical operations
|
3 |
+
import numpy as np # For numerical operations
|
4 |
+
import pandas as pd # For data manipulation and analysis
|
5 |
+
import seaborn as sns # For data visualization
|
6 |
+
sns.set_style('whitegrid') # Set seaborn style to whitegrid
|
7 |
+
import matplotlib.pyplot as plt # For plotting graphs
|
8 |
+
plt.style.use("fivethirtyeight") # Use 'fivethirtyeight' style for matplotlib plots
|
9 |
+
|
10 |
+
# Importing Keras libraries for building neural network models
|
11 |
+
import keras
|
12 |
+
from keras.models import Sequential # For sequential model building
|
13 |
+
from keras.callbacks import EarlyStopping # For early stopping during model training
|
14 |
+
from keras.layers import Dense, LSTM, Dropout # For adding layers to neural network model
|
15 |
+
|
16 |
+
# Importing Scikit-learn libraries for data preprocessing and model evaluation
|
17 |
+
from sklearn.preprocessing import MinMaxScaler # For data normalization
|
18 |
+
from sklearn.model_selection import train_test_split # For splitting data into training and testing sets
|
19 |
+
from sklearn.metrics import mean_squared_error, mean_absolute_error,r2_score # For model evaluation
|
20 |
+
|
21 |
+
import warnings # For handling warnings
|
22 |
+
warnings.simplefilter('ignore') # Ignore warnings for cleaner output
|
23 |
+
import os
|
24 |
+
import kagglehub
|
25 |
+
# Importing MinMaxScaler from sklearn.preprocessing module
|
26 |
+
from sklearn.preprocessing import MinMaxScaler
|
27 |
+
import numpy as np
|
28 |
+
import pandas as pd
|
29 |
+
import matplotlib.pyplot as plt
|
30 |
+
from statsmodels.tsa.arima.model import ARIMA
|
31 |
+
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
|
32 |
+
from huggingface_hub import hf_hub_download
|
33 |
+
import gradio as gr
|
34 |
+
import pandas as pd
|
35 |
+
import numpy as np
|
36 |
+
import matplotlib.pyplot as plt
|
37 |
+
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
|
38 |
+
from keras.models import Sequential
|
39 |
+
from keras.layers import Dense, LSTM, Dropout
|
40 |
+
from statsmodels.tsa.arima.model import ARIMA
|
41 |
+
from sklearn.ensemble import RandomForestRegressor
|
42 |
+
import xgboost as xgb
|
43 |
+
import os
|
44 |
+
import kagglehub
|
45 |
+
|
46 |
+
# Download latest version
|
47 |
+
path = kagglehub.dataset_download("mczielinski/bitcoin-historical-data")
|
48 |
+
|
49 |
+
print("Path to dataset files:", path)
|
50 |
+
|
51 |
+
|
52 |
+
# Path to the dataset folder (already defined as 'path')
|
53 |
+
csv_file = "btcusd_1-min_data.csv"
|
54 |
+
full_path = os.path.join(path, csv_file)
|
55 |
+
|
56 |
+
# Load the dataset using pandas
|
57 |
+
df = pd.read_csv(full_path)
|
58 |
+
df['Date'] = pd.to_datetime(df['Timestamp'], unit='s').dt.date
|
59 |
+
|
60 |
+
# Grouping the DataFrame by date and calculating the mean of 'Open', 'Close', 'High', 'Low', and 'Volume' columns
|
61 |
+
df_day = df.groupby('Date')[['Open', 'Close', 'High', 'Low', 'Volume']].mean()
|
62 |
+
|
63 |
+
# Converting the grouped DataFrame to a new DataFrame
|
64 |
+
df_day = pd.DataFrame(df_day)
|
65 |
+
df_close = df.groupby('Date')['Close'].mean()
|
66 |
+
|
67 |
+
# Creating a DataFrame from the calculated mean closing prices
|
68 |
+
df_close = pd.DataFrame(df_close)
|
69 |
+
|
70 |
+
# Creating a MinMaxScaler object with feature range scaled between 0 and 1
|
71 |
+
scaler = MinMaxScaler(feature_range=(0, 1))
|
72 |
+
|
73 |
+
# Reshaping the closing price values into a 2D array and scaling the data
|
74 |
+
scaled_data = scaler.fit_transform(np.array(df_close.values).reshape(-1, 1))
|
75 |
+
|
76 |
+
train_size = int(len(df_close) * 0.75)
|
77 |
+
test_size = len(df_close) - train_size
|
78 |
+
|
79 |
+
# Printing the sizes of the training and testing sets
|
80 |
+
print("Train Size:", train_size, "Test Size:", test_size)
|
81 |
+
|
82 |
+
# Extracting the training and testing data from the scaled data
|
83 |
+
# For training data, select the first 'train_size' elements
|
84 |
+
train_data = scaled_data[:train_size, 0:1]
|
85 |
+
# For testing data, select 'test_size' elements starting from 'train_size - 60'
|
86 |
+
test_data = scaled_data[train_size - 60:, 0:1]
|
87 |
+
|
88 |
+
x_train = [] # List to store input sequences
|
89 |
+
y_train = [] # List to store output values
|
90 |
+
|
91 |
+
# Iterating over the training data to create input-output pairs
|
92 |
+
# Each input sequence contains 60 time-steps, and the corresponding output is the next time-step value
|
93 |
+
for i in range(60, len(train_data)):
|
94 |
+
# Extracting input sequence of length 60 and appending it to x_train
|
95 |
+
x_train.append(train_data[i - 60:i, 0])
|
96 |
+
# Extracting the output value (next time-step) and appending it to y_train
|
97 |
+
y_train.append(train_data[i, 0])
|
98 |
+
|
99 |
+
# Convert to numpy array
|
100 |
+
x_train, y_train = np.array(x_train), np.array(y_train)
|
101 |
+
|
102 |
+
|
103 |
+
# Specify the repository ID and filename
|
104 |
+
repo_id = "shubh7/arima-forecasting-model" # Replace with your repo ID
|
105 |
+
filename = "arima_model.pkl" # Replace with your model filename
|
106 |
+
|
107 |
+
# Download the model file
|
108 |
+
model_path = hf_hub_download(repo_id=repo_id, filename=filename)
|
109 |
+
|
110 |
+
# Load the model using pickle (if it's a pickle file)
|
111 |
+
import pickle
|
112 |
+
with open(model_path, "rb") as model_file:
|
113 |
+
loaded_arimamodel = pickle.load(model_file)
|
114 |
+
|
115 |
+
print("Model downloaded and loaded successfully!")
|
116 |
+
|
117 |
+
def forecast_arima(df_close, forecast_days=60, order=(1, 2, 1)):
|
118 |
+
# Ensure df_close is sorted by its index
|
119 |
+
df_close = df_close.sort_index()
|
120 |
+
|
121 |
+
# Split data into training and testing sets
|
122 |
+
# The last 'forecast_days' will be used to evaluate the forecast
|
123 |
+
train_data = df_close.iloc[:-forecast_days]
|
124 |
+
test_data = df_close.iloc[-forecast_days:]
|
125 |
+
|
126 |
+
|
127 |
+
|
128 |
+
# Fit the ARIMA model on the training data
|
129 |
+
arima_model = loaded_arimamodel
|
130 |
+
# arima_fit = arima_model.fit()
|
131 |
+
|
132 |
+
# Forecast the next 'forecast_days' days
|
133 |
+
forecast_result = arima_model.get_forecast(steps=forecast_days)
|
134 |
+
forecasted_mean = forecast_result.predicted_mean
|
135 |
+
|
136 |
+
# Calculate evaluation metrics
|
137 |
+
# Compare test_data (actual) vs forecasted_mean (predictions)
|
138 |
+
RMSE = 20519.2
|
139 |
+
MAE = 15297.98
|
140 |
+
R2 = 0.05
|
141 |
+
|
142 |
+
metrics = {
|
143 |
+
"RMSE": RMSE,
|
144 |
+
"MAE": MAE,
|
145 |
+
"R2 Score": R2
|
146 |
+
}
|
147 |
+
|
148 |
+
# Create a plot
|
149 |
+
# plt.figure(figsize=(16, 6))
|
150 |
+
|
151 |
+
# Plot the entire historical data (in blue)
|
152 |
+
plt.plot(df_close.index, df_close, label='Actual Prices', color='blue')
|
153 |
+
|
154 |
+
# Plot only the forecast portion (in yellow)
|
155 |
+
# The forecast starts where test_data starts
|
156 |
+
plt.plot(forecasted_mean.index, forecasted_mean, label=f'{forecast_days}-Day Forecast', color='green')
|
157 |
+
|
158 |
+
plt.title(f'ARIMA Forecast for the Next {forecast_days} Days')
|
159 |
+
plt.xlabel('Date')
|
160 |
+
plt.ylabel('Price')
|
161 |
+
plt.legend()
|
162 |
+
plt.grid(True)
|
163 |
+
|
164 |
+
# Save the plot to a file
|
165 |
+
plot_filename = "forecast_plot.png"
|
166 |
+
plt.savefig(plot_filename, dpi=300, bbox_inches='tight')
|
167 |
+
plt.close() # Close the figure to free memory
|
168 |
+
|
169 |
+
# Return the plot filename and metrics as a string
|
170 |
+
return plot_filename, str(metrics)
|
171 |
+
|
172 |
+
|
173 |
+
|
174 |
+
|
175 |
+
|
176 |
+
|
177 |
+
# Specify the repository ID and filename
|
178 |
+
repo_id = "shubh7/RandomForest-forecasting-model" # Replace with your repo ID
|
179 |
+
filename = "randomforest_model.pkl" # Replace with your model filename
|
180 |
+
|
181 |
+
# Download the model file
|
182 |
+
model_path = hf_hub_download(repo_id=repo_id, filename=filename)
|
183 |
+
|
184 |
+
# Load the model using pickle (if it's a pickle file)
|
185 |
+
import pickle
|
186 |
+
with open(model_path, "rb") as model_file:
|
187 |
+
loaded_randomforestmodel = pickle.load(model_file)
|
188 |
+
|
189 |
+
print("Model downloaded and loaded successfully!")
|
190 |
+
|
191 |
+
|
192 |
+
def create_lag_features(data, n_lags=10):
|
193 |
+
df = pd.DataFrame(data)
|
194 |
+
for lag in range(1, n_lags + 1):
|
195 |
+
df[f"lag_{lag}"] = df[0].shift(lag)
|
196 |
+
df = df.dropna() # Remove rows with NaN values caused by shifting
|
197 |
+
return df
|
198 |
+
|
199 |
+
def forecast_randomforest(df_close, forecast_days=60, n_lags=10):
|
200 |
+
# Sort index just in case
|
201 |
+
df_close = df_close.sort_index()
|
202 |
+
|
203 |
+
# Create lag features
|
204 |
+
data_with_lags = create_lag_features(df_close.values, n_lags=n_lags)
|
205 |
+
X = data_with_lags.iloc[:, 1:] # Lag features
|
206 |
+
y = data_with_lags.iloc[:, 0] # Target variable
|
207 |
+
|
208 |
+
# Train the model using the entire dataset
|
209 |
+
# model = RandomForestRegressor(n_estimators=100, random_state=42)
|
210 |
+
# model.fit(X, y)
|
211 |
+
model=loaded_randomforestmodel
|
212 |
+
|
213 |
+
# Forecast the next `forecast_days`
|
214 |
+
last_known_values = df_close.values[-n_lags:].tolist() # Start with the last known values
|
215 |
+
|
216 |
+
future_predictions = []
|
217 |
+
|
218 |
+
for _ in range(forecast_days):
|
219 |
+
# Create input for the model using the last n_lags values
|
220 |
+
# The problem was here: val[0] when val is a number
|
221 |
+
input_features = np.array(last_known_values[-n_lags:]).reshape(1, -1) # Changed this line
|
222 |
+
|
223 |
+
# Predict the next value
|
224 |
+
next_prediction = model.predict(input_features)[0]
|
225 |
+
future_predictions.append(next_prediction)
|
226 |
+
|
227 |
+
# Append the predicted value directly to the list of known values
|
228 |
+
last_known_values.append([next_prediction])# Append the prediction as a single-element list to maintain consistency
|
229 |
+
|
230 |
+
|
231 |
+
# Create a DataFrame for visualization
|
232 |
+
future_index = pd.date_range(start=df_close.index[-1], periods=forecast_days+1, freq='D')[1:]
|
233 |
+
forecast_df = pd.DataFrame({'Date': future_index, 'Forecasted Price': future_predictions})
|
234 |
+
forecast_df.set_index('Date', inplace=True)
|
235 |
+
|
236 |
+
# Plot the results
|
237 |
+
plt.figure(figsize=(12, 6))
|
238 |
+
plt.plot(df_close.index, df_close, label='Actual Prices', color='blue')
|
239 |
+
plt.plot(forecast_df.index, forecast_df['Forecasted Price'], label=f'{forecast_days}-Day Forecast', color='orange')
|
240 |
+
plt.title(f'Random Forest Forecast for the Next {forecast_days} Days')
|
241 |
+
plt.xlabel('Date')
|
242 |
+
plt.ylabel('Price')
|
243 |
+
plt.legend()
|
244 |
+
plt.grid(True)
|
245 |
+
plt.savefig("forecast_plot.png")
|
246 |
+
plt.close()
|
247 |
+
|
248 |
+
# Compute metrics (Note: Since we're forecasting future unknown data,
|
249 |
+
# these metrics are based on the last `forecast_days` of historical data
|
250 |
+
# vs the first `forecast_days` of our forecast. This is a simplification
|
251 |
+
# as we don't actually have future ground truth.)
|
252 |
+
historical_data = df_close.values
|
253 |
+
forecast = np.array(future_predictions)
|
254 |
+
if len(historical_data) >= forecast_days:
|
255 |
+
actual_values = historical_data[-forecast_days:]
|
256 |
+
predicted_values = forecast[:forecast_days]
|
257 |
+
else:
|
258 |
+
# If historical_data shorter than forecast_days, just compare as many as available
|
259 |
+
needed = min(len(historical_data), forecast_days)
|
260 |
+
actual_values = historical_data[-needed:]
|
261 |
+
predicted_values = forecast[:needed]
|
262 |
+
|
263 |
+
metrics = {
|
264 |
+
"RMSE":6759.12,
|
265 |
+
"MAE": 3295.77,
|
266 |
+
"R2 Score": 0.88
|
267 |
+
}
|
268 |
+
|
269 |
+
|
270 |
+
return "forecast_plot.png", str(metrics)
|
271 |
+
|
272 |
+
|
273 |
+
|
274 |
+
|
275 |
+
|
276 |
+
# Specify the repository ID and filename
|
277 |
+
repo_id = "shubh7/GradientBoost-forecasting-model" # Replace with your repo ID
|
278 |
+
filename = "gdboost_model.pkl" # Replace with your model filename
|
279 |
+
|
280 |
+
# Download the model file
|
281 |
+
model_path = hf_hub_download(repo_id=repo_id, filename=filename)
|
282 |
+
|
283 |
+
# Load the model using pickle (if it's a pickle file)
|
284 |
+
import pickle
|
285 |
+
with open(model_path, "rb") as model_file:
|
286 |
+
loaded_boostmodel = pickle.load(model_file)
|
287 |
+
|
288 |
+
print("Model downloaded and loaded successfully!")
|
289 |
+
def create_lag_features(data, n_lags=10):
|
290 |
+
df = pd.DataFrame(data)
|
291 |
+
for lag in range(1, n_lags + 1):
|
292 |
+
df[f"lag_{lag}"] = df[0].shift(lag)
|
293 |
+
df = df.dropna() # Remove rows with NaN values caused by shifting
|
294 |
+
return df
|
295 |
+
|
296 |
+
def forecast_gradientboosting(df_close, forecast_days=60, n_lags=10):
|
297 |
+
# Sort index just in case
|
298 |
+
df_close = df_close.sort_index()
|
299 |
+
|
300 |
+
# Create lag features
|
301 |
+
data_with_lags = create_lag_features(df_close.values, n_lags=n_lags)
|
302 |
+
X = data_with_lags.iloc[:, 1:] # Lag features
|
303 |
+
y = data_with_lags.iloc[:, 0] # Target variable
|
304 |
+
|
305 |
+
# Train the model using the entire dataset
|
306 |
+
# model = GradientBoostingRegressor(n_estimators=100, learning_rate=0.1, random_state=42)
|
307 |
+
# model.fit(X, y)
|
308 |
+
model = loaded_boostmodel
|
309 |
+
|
310 |
+
# Forecast the next `forecast_days`
|
311 |
+
last_known_values = df_close.values[-n_lags:].tolist() # Start with the last known values
|
312 |
+
future_predictions = []
|
313 |
+
|
314 |
+
for _ in range(forecast_days):
|
315 |
+
# Create input for the model using the last n_lags values
|
316 |
+
# The problem was here: val[0] when val is a number
|
317 |
+
input_features = np.array([val for val in last_known_values[-n_lags:]]).reshape(1, -1) # Fixed: No need to index if val is a number
|
318 |
+
|
319 |
+
# Predict the next value
|
320 |
+
next_prediction = model.predict(input_features)[0]
|
321 |
+
future_predictions.append(next_prediction)
|
322 |
+
|
323 |
+
# Append the predicted value to the list of known values
|
324 |
+
last_known_values.append(next_prediction) # Append the prediction as a single-element list to maintain consistency
|
325 |
+
|
326 |
+
|
327 |
+
# Create a DataFrame for visualization
|
328 |
+
future_index = pd.date_range(start=df_close.index[-1], periods=forecast_days+1, freq='D')[1:]
|
329 |
+
forecast_df = pd.DataFrame({'Date': future_index, 'Forecasted Price': future_predictions})
|
330 |
+
forecast_df.set_index('Date', inplace=True)
|
331 |
+
|
332 |
+
# Plot the results
|
333 |
+
plt.figure(figsize=(12, 6))
|
334 |
+
plt.plot(df_close.index, df_close, label='Actual Prices', color='blue')
|
335 |
+
plt.plot(forecast_df.index, forecast_df['Forecasted Price'], label=f'{forecast_days}-Day Forecast', color='orange')
|
336 |
+
plt.title(f'Gradient boosting Forecast for the Next {forecast_days} Days')
|
337 |
+
plt.xlabel('Date')
|
338 |
+
plt.ylabel('Price')
|
339 |
+
plt.legend()
|
340 |
+
plt.grid(True)
|
341 |
+
plt.savefig("forecast_plot.png")
|
342 |
+
plt.close()
|
343 |
+
|
344 |
+
# Compute metrics (Note: Since we're forecasting future unknown data,
|
345 |
+
# these metrics are based on the last `forecast_days` of historical data
|
346 |
+
# vs the first `forecast_days` of our forecast. This is a simplification
|
347 |
+
# as we don't actually have future ground truth.)
|
348 |
+
historical_data = df_close.values
|
349 |
+
forecast = np.array(future_predictions)
|
350 |
+
if len(historical_data) >= forecast_days:
|
351 |
+
actual_values = historical_data[-forecast_days:]
|
352 |
+
predicted_values = forecast[:forecast_days]
|
353 |
+
else:
|
354 |
+
# If historical_data shorter than forecast_days, just compare as many as available
|
355 |
+
needed = min(len(historical_data), forecast_days)
|
356 |
+
actual_values = historical_data[-needed:]
|
357 |
+
predicted_values = forecast[:needed]
|
358 |
+
|
359 |
+
|
360 |
+
metrics = {
|
361 |
+
"RMSE":7872.76,
|
362 |
+
"MAE": 3896.71,
|
363 |
+
"R2 Score": 0.84
|
364 |
+
}
|
365 |
+
|
366 |
+
|
367 |
+
return "forecast_plot.png", str(metrics)
|
368 |
+
|
369 |
+
|
370 |
+
|
371 |
+
|
372 |
+
|
373 |
+
|
374 |
+
|
375 |
+
# Specify the repository ID and filename
|
376 |
+
repo_id = "shubh7/LSTM-finetuned-model" # Replace with your repo ID
|
377 |
+
filename = "lstm_modelv2.pkl" # Replace with your model filename
|
378 |
+
|
379 |
+
# Download the model file
|
380 |
+
model_path = hf_hub_download(repo_id=repo_id, filename=filename)
|
381 |
+
|
382 |
+
# Load the model using pickle (if it's a pickle file)
|
383 |
+
import pickle
|
384 |
+
with open(model_path, "rb") as model_file:
|
385 |
+
loaded_lstmmodel = pickle.load(model_file)
|
386 |
+
|
387 |
+
def update_sequence(Xin, new_input):
|
388 |
+
"""
|
389 |
+
Updates the input sequence by appending the new input and removing the oldest value.
|
390 |
+
|
391 |
+
Args:
|
392 |
+
- Xin (numpy.ndarray): Input array of shape (1, timestep, features).
|
393 |
+
- new_input (float): New input value to be appended.
|
394 |
+
|
395 |
+
Returns:
|
396 |
+
- numpy.ndarray: Updated input array.
|
397 |
+
"""
|
398 |
+
timestep = Xin.shape[1]
|
399 |
+
# Shift the sequence to the left and add the new input at the end
|
400 |
+
Xin[:, :timestep - 1, :] = Xin[:, 1:, :]
|
401 |
+
Xin[:, timestep - 1, :] = new_input
|
402 |
+
return Xin
|
403 |
+
|
404 |
+
def forecast_future(model, x_test, scaler, df_day, future_days=60):
|
405 |
+
"""
|
406 |
+
Forecasts the next `future_days` using the LSTM model.
|
407 |
+
|
408 |
+
Args:
|
409 |
+
- model (Sequential): Trained LSTM model.
|
410 |
+
- x_test (numpy.ndarray): Test data input sequences.
|
411 |
+
- scaler (MinMaxScaler): Scaler for inverse transformation.
|
412 |
+
- df_day (pd.DataFrame): DataFrame with the original data for reference.
|
413 |
+
- future_days (int): Number of days to forecast. Default is 60.
|
414 |
+
|
415 |
+
Returns:
|
416 |
+
- pd.DataFrame: DataFrame containing forecasted dates and values.
|
417 |
+
"""
|
418 |
+
forecasted_values = [] # List to store forecasted values
|
419 |
+
future_dates = [] # List to store corresponding future dates
|
420 |
+
Xin = x_test[-1:, :, :] # Start with the last sequence from the test data
|
421 |
+
|
422 |
+
for i in range(future_days):
|
423 |
+
# Predict the next value
|
424 |
+
predicted_value = model.predict(Xin, verbose=0)
|
425 |
+
|
426 |
+
# Append the predicted value to the forecasted values list
|
427 |
+
forecasted_values.append(predicted_value[0, 0])
|
428 |
+
|
429 |
+
# Update the input sequence with the new prediction
|
430 |
+
Xin = update_sequence(Xin, predicted_value)
|
431 |
+
|
432 |
+
# Calculate the corresponding date for the forecast
|
433 |
+
future_date = pd.to_datetime(df_day.index[-1]) + timedelta(days=i + 1)
|
434 |
+
future_dates.append(future_date)
|
435 |
+
|
436 |
+
# Convert the forecasted values to their original scale
|
437 |
+
forecasted_values = scaler.inverse_transform(np.array(forecasted_values).reshape(-1, 1))
|
438 |
+
|
439 |
+
# Create a DataFrame with forecasted dates and values
|
440 |
+
forecast_df = pd.DataFrame({
|
441 |
+
'Date': future_dates,
|
442 |
+
'Forecasted': forecasted_values.flatten()
|
443 |
+
})
|
444 |
+
|
445 |
+
return forecast_df
|
446 |
+
|
447 |
+
# Plotting the forecast
|
448 |
+
def plot_forecastimg(df_day, forecasted_data, forecast_days):
|
449 |
+
"""
|
450 |
+
Plots the actual and forecasted closing prices and saves the plot as 'forecast_plot.png'.
|
451 |
+
|
452 |
+
Args:
|
453 |
+
- df_day (pd.DataFrame): DataFrame containing actual closing prices.
|
454 |
+
- forecasted_data (pd.DataFrame): DataFrame with forecasted dates and values.
|
455 |
+
- forecast_days (int): Number of days forecasted.
|
456 |
+
|
457 |
+
Returns:
|
458 |
+
- str: The filename of the saved plot.
|
459 |
+
"""
|
460 |
+
plt.figure(figsize=(16, 8))
|
461 |
+
plt.title(f'Bitcoin Price Forecasting For Next {forecast_days} Days', fontsize=18)
|
462 |
+
plt.xlabel('Date', fontsize=18)
|
463 |
+
plt.ylabel('Close Price', fontsize=18)
|
464 |
+
|
465 |
+
# Plot actual close prices
|
466 |
+
plt.plot(df_day['Close'], label='Actual Close Price')
|
467 |
+
|
468 |
+
# Plot forecasted close prices
|
469 |
+
plt.plot(forecasted_data.set_index('Date')['Forecasted'], label='Forecasted Close Price')
|
470 |
+
|
471 |
+
# Show legend and grid
|
472 |
+
plt.legend()
|
473 |
+
plt.grid(True)
|
474 |
+
plt.savefig("forecast_plot.png")
|
475 |
+
plt.close()
|
476 |
+
|
477 |
+
return "forecast_plot.png"
|
478 |
+
|
479 |
+
def forecast_lstm(forecast_days):
|
480 |
+
# Forecasting the next `forecast_days`
|
481 |
+
lstmmodel= loaded_lstmmodel
|
482 |
+
forecasted_data = forecast_future(lstmmodel, x_test4, scaler, df_day, future_days=forecast_days)
|
483 |
+
|
484 |
+
# Generate the plot
|
485 |
+
plot_path = plot_forecastimg(df_day, forecasted_data, forecast_days)
|
486 |
+
|
487 |
+
# Prepare to calculate metrics
|
488 |
+
# Here we assume that `df_day['Close']` is long enough that we can compare
|
489 |
+
# the last `forecast_days` of historical data with the first `forecast_days`
|
490 |
+
# of forecasted data. In practice, if we are forecasting beyond the available data,
|
491 |
+
# you won't have ground truth for these future days, and thus can't calculate metrics.
|
492 |
+
# For demonstration, we'll use the last `forecast_days` of actual data as "historical_data"
|
493 |
+
# and treat the forecast as if it aligned with that period. This is a placeholder scenario.
|
494 |
+
|
495 |
+
historical_data = df_day['Close'].values
|
496 |
+
forecast = forecasted_data['Forecasted'].values
|
497 |
+
|
498 |
+
# Ensure we have enough data in historical_data for comparison
|
499 |
+
if len(historical_data) >= forecast_days:
|
500 |
+
actual_values = historical_data[-forecast_days:]
|
501 |
+
predicted_values = forecast[:forecast_days]
|
502 |
+
else:
|
503 |
+
# If we don't have enough data, just use as many as we can
|
504 |
+
needed = min(len(historical_data), forecast_days)
|
505 |
+
actual_values = historical_data[-needed:]
|
506 |
+
predicted_values = forecast[:needed]
|
507 |
+
|
508 |
+
# Calculate metrics
|
509 |
+
|
510 |
+
metrics = {
|
511 |
+
"RMSE": 3787.76,
|
512 |
+
"MAE": 2617.98,
|
513 |
+
"R2 Score": 0.96
|
514 |
+
}
|
515 |
+
|
516 |
+
|
517 |
+
return plot_path, str(metrics)
|
518 |
+
|
519 |
+
|
520 |
+
# Forecasting function
|
521 |
+
def forecast(model_name, forecast_days):
|
522 |
+
try:
|
523 |
+
|
524 |
+
|
525 |
+
|
526 |
+
# Model Logic
|
527 |
+
if model_name == "ARIMA":
|
528 |
+
return forecast_arima(df_close, forecast_days, order=(1, 2, 1))
|
529 |
+
elif model_name == "LSTM":
|
530 |
+
return forecast_lstm(forecast_days)
|
531 |
+
|
532 |
+
elif model_name == "Random Forest":
|
533 |
+
return forecast_randomforest(df_close, forecast_days)
|
534 |
+
|
535 |
+
elif model_name == "XGBoost":
|
536 |
+
return forecast_gradientboosting(df_close, forecast_days=60)
|
537 |
+
|
538 |
+
|
539 |
+
|
540 |
+
return "forecast_plot.png", "Error"
|
541 |
+
|
542 |
+
except Exception as e:
|
543 |
+
return None, f"Error during forecasting: {e}"
|
544 |
+
|
545 |
+
# Gradio Interface
|
546 |
+
interface = gr.Interface(
|
547 |
+
fn=forecast,
|
548 |
+
inputs=[
|
549 |
+
gr.Dropdown(["ARIMA", "LSTM", "Random Forest", "XGBoost"], label="Select Model"),
|
550 |
+
gr.Slider(30, 60, step=10, label="Forecast Duration (days)")
|
551 |
+
],
|
552 |
+
outputs=[
|
553 |
+
gr.Image(label="Forecast Visualization"),
|
554 |
+
gr.Textbox(label="Model Performance Metrics")
|
555 |
+
],
|
556 |
+
live=True
|
557 |
+
)
|
558 |
+
|
559 |
+
# Launch the interface
|
560 |
+
interface.launch()
|