Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
from langchain_core.prompts import PromptTemplate | |
from langchain_community.document_loaders import PyPDFLoader | |
from langchain_google_genai import ChatGoogleGenerativeAI | |
import google.generativeai as genai | |
from langchain.chains.question_answering import load_qa_chain | |
import torch | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
# Configure Gemini API | |
genai.configure(api_key=os.getenv("GOOGLE_API_KEY")) | |
# Load Mistral model | |
model_path = "nvidia/Mistral-NeMo-Minitron-8B-Base" | |
mistral_tokenizer = AutoTokenizer.from_pretrained(model_path) | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
dtype = torch.bfloat16 | |
mistral_model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=dtype, device_map=device) | |
def initialize(file_path, question): | |
try: | |
model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3) | |
prompt_template = """Answer the question as precise as possible using the provided context. If the answer is | |
not contained in the context, say "answer not available in context" \n\n | |
Context: \n {context}?\n | |
Question: \n {question} \n | |
Answer: | |
""" | |
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"]) | |
if os.path.exists(file_path): | |
pdf_loader = PyPDFLoader(file_path) | |
pages = pdf_loader.load_and_split() | |
context = "\n".join(str(page.page_content) for page in pages[:10]) | |
stuff_chain = load_qa_chain(model, chain_type="stuff", prompt=prompt) | |
stuff_answer = stuff_chain({"input_documents": pages, "question": question, "context": context}, return_only_outputs=True) | |
gemini_answer = stuff_answer['output_text'] | |
# Use Mistral model for additional text generation | |
mistral_prompt = f"Based on this answer: {gemini_answer}\nGenerate a follow-up question:" | |
mistral_inputs = mistral_tokenizer.encode(mistral_prompt, return_tensors='pt').to(device) | |
with torch.no_grad(): | |
mistral_outputs = mistral_model.generate(mistral_inputs, max_length=100) | |
mistral_output = mistral_tokenizer.decode(mistral_outputs[0], skip_special_tokens=True) | |
combined_output = f"Gemini Answer: {gemini_answer}\n\nMistral Follow-up: {mistral_output}" | |
return combined_output | |
else: | |
return "Error: Unable to process the document. Please ensure the PDF file is valid." | |
except Exception as e: | |
return f"An error occurred: {str(e)}" | |
# Define Gradio Interface | |
input_file = gr.File(label="Upload PDF File") | |
input_question = gr.Textbox(label="Ask about the document") | |
output_text = gr.Textbox(label="Answer - Combined Gemini and Mistral") | |
def pdf_qa(file, question): | |
if file is None: | |
return "Please upload a PDF file first." | |
return initialize(file.name, question) | |
# Create Gradio Interface | |
gr.Interface( | |
fn=pdf_qa, | |
inputs=[input_file, input_question], | |
outputs=output_text, | |
title="RAG Knowledge Retrieval using Gemini API and Mistral Model", | |
description="Upload a PDF file and ask questions about the content." | |
).launch() |