Spaces:
Runtime error
Runtime error
sidharthism
commited on
Commit
·
621050a
1
Parent(s):
d3d01c9
Create new file
Browse files- cloth_segmentation +0 -1
- cloth_segmentation/generate_cloth_mask.py +142 -0
cloth_segmentation
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
Subproject commit 28392f0da3aa5eb9ae64db73d04b31be10ce6350
|
|
|
|
cloth_segmentation/generate_cloth_mask.py
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .networks import U2NET
|
2 |
+
import torchvision.transforms as transforms
|
3 |
+
import torch.nn.functional as F
|
4 |
+
import os
|
5 |
+
from PIL import Image
|
6 |
+
from collections import OrderedDict
|
7 |
+
|
8 |
+
import torch
|
9 |
+
|
10 |
+
device = 'cuda' if torch.cuda.is_available() else "cpu"
|
11 |
+
|
12 |
+
if device == 'cuda':
|
13 |
+
torch.cuda.empty_cache()
|
14 |
+
|
15 |
+
# for hugging face
|
16 |
+
BASE_DIR = "/home/path/app"
|
17 |
+
|
18 |
+
# BASE_DIR = os.getcwd()
|
19 |
+
|
20 |
+
image_dir = 'cloth'
|
21 |
+
result_dir = 'cloth_mask'
|
22 |
+
checkpoint_path = 'cloth_segmentation/checkpoints/cloth_segm_u2net_latest.pth'
|
23 |
+
|
24 |
+
|
25 |
+
def load_checkpoint_mgpu(model, checkpoint_path):
|
26 |
+
if not os.path.exists(checkpoint_path):
|
27 |
+
print("----No checkpoints at given path----")
|
28 |
+
return
|
29 |
+
model_state_dict = torch.load(
|
30 |
+
checkpoint_path, map_location=torch.device("cpu"))
|
31 |
+
new_state_dict = OrderedDict()
|
32 |
+
for k, v in model_state_dict.items():
|
33 |
+
name = k[7:] # remove `module.`
|
34 |
+
new_state_dict[name] = v
|
35 |
+
|
36 |
+
model.load_state_dict(new_state_dict)
|
37 |
+
print("----checkpoints loaded from path: {}----".format(checkpoint_path))
|
38 |
+
return model
|
39 |
+
|
40 |
+
|
41 |
+
class Normalize_image(object):
|
42 |
+
"""Normalize given tensor into given mean and standard dev
|
43 |
+
Args:
|
44 |
+
mean (float): Desired mean to substract from tensors
|
45 |
+
std (float): Desired std to divide from tensors
|
46 |
+
"""
|
47 |
+
|
48 |
+
def __init__(self, mean, std):
|
49 |
+
assert isinstance(mean, (float))
|
50 |
+
if isinstance(mean, float):
|
51 |
+
self.mean = mean
|
52 |
+
|
53 |
+
if isinstance(std, float):
|
54 |
+
self.std = std
|
55 |
+
|
56 |
+
self.normalize_1 = transforms.Normalize(self.mean, self.std)
|
57 |
+
self.normalize_3 = transforms.Normalize(
|
58 |
+
[self.mean] * 3, [self.std] * 3)
|
59 |
+
self.normalize_18 = transforms.Normalize(
|
60 |
+
[self.mean] * 18, [self.std] * 18)
|
61 |
+
|
62 |
+
def __call__(self, image_tensor):
|
63 |
+
if image_tensor.shape[0] == 1:
|
64 |
+
return self.normalize_1(image_tensor)
|
65 |
+
|
66 |
+
elif image_tensor.shape[0] == 3:
|
67 |
+
return self.normalize_3(image_tensor)
|
68 |
+
|
69 |
+
elif image_tensor.shape[0] == 18:
|
70 |
+
return self.normalize_18(image_tensor)
|
71 |
+
|
72 |
+
else:
|
73 |
+
assert "Please set proper channels! Normlization implemented only for 1, 3 and 18"
|
74 |
+
|
75 |
+
|
76 |
+
def get_palette(num_cls):
|
77 |
+
""" Returns the color map for visualizing the segmentation mask.
|
78 |
+
Args:
|
79 |
+
num_cls: Number of classes
|
80 |
+
Returns:
|
81 |
+
The color map
|
82 |
+
"""
|
83 |
+
n = num_cls
|
84 |
+
palette = [0] * (n * 3)
|
85 |
+
for j in range(0, n):
|
86 |
+
lab = j
|
87 |
+
palette[j * 3 + 0] = 0
|
88 |
+
palette[j * 3 + 1] = 0
|
89 |
+
palette[j * 3 + 2] = 0
|
90 |
+
i = 0
|
91 |
+
while lab:
|
92 |
+
palette[j * 3 + 0] = 255
|
93 |
+
palette[j * 3 + 1] = 255
|
94 |
+
palette[j * 3 + 2] = 255
|
95 |
+
# palette[j * 3 + 0] |= (((lab >> 0) & 1) << (7 - i))
|
96 |
+
# palette[j * 3 + 1] |= (((lab >> 1) & 1) << (7 - i))
|
97 |
+
# palette[j * 3 + 2] |= (((lab >> 2) & 1) << (7 - i))
|
98 |
+
i += 1
|
99 |
+
lab >>= 3
|
100 |
+
return palette
|
101 |
+
|
102 |
+
|
103 |
+
def generate_cloth_mask():
|
104 |
+
transforms_list = []
|
105 |
+
transforms_list += [transforms.ToTensor()]
|
106 |
+
transforms_list += [Normalize_image(0.5, 0.5)]
|
107 |
+
transform_rgb = transforms.Compose(transforms_list)
|
108 |
+
|
109 |
+
net = U2NET(in_ch=3, out_ch=4)
|
110 |
+
with torch.no_grad():
|
111 |
+
net = load_checkpoint_mgpu(net, checkpoint_path)
|
112 |
+
net = net.to(device)
|
113 |
+
net = net.eval()
|
114 |
+
|
115 |
+
palette = get_palette(4)
|
116 |
+
|
117 |
+
images_list = sorted(os.listdir(image_dir))
|
118 |
+
for image_name in images_list:
|
119 |
+
img = Image.open(os.path.join(
|
120 |
+
image_dir, image_name)).convert('RGB')
|
121 |
+
img_size = img.size
|
122 |
+
img = img.resize((768, 768), Image.Resampling.BICUBIC)
|
123 |
+
image_tensor = transform_rgb(img)
|
124 |
+
image_tensor = torch.unsqueeze(image_tensor, 0)
|
125 |
+
|
126 |
+
output_tensor = net(image_tensor.to(device))
|
127 |
+
output_tensor = F.log_softmax(output_tensor[0], dim=1)
|
128 |
+
output_tensor = torch.max(output_tensor, dim=1, keepdim=True)[1]
|
129 |
+
output_tensor = torch.squeeze(output_tensor, dim=0)
|
130 |
+
output_tensor = torch.squeeze(output_tensor, dim=0)
|
131 |
+
output_arr = output_tensor.cpu().numpy()
|
132 |
+
|
133 |
+
output_img = Image.fromarray(output_arr.astype('uint8'), mode='L')
|
134 |
+
output_img = output_img.resize(img_size, Image.Resampling.BICUBIC)
|
135 |
+
|
136 |
+
output_img.putpalette(palette)
|
137 |
+
output_img = output_img.convert('L')
|
138 |
+
output_img.save(os.path.join(result_dir, image_name[:-4]+'.jpg'))
|
139 |
+
|
140 |
+
|
141 |
+
if __name__ == '__main__':
|
142 |
+
generate_cloth_mask()
|