Spaces:
Running
Running
loic-dagnas-sinequa
commited on
Update README.md (#1)
Browse files- Update README.md (a722fe5d2c34c3400fee4ea6147a144775bc006c)
- Basile's review (6cffe3080243875dff6332aadf3c1e3fa2c0173e)
- Add guava (b490a2508b51a096e7750e44b5ef5c1a1c9bed89)
- Steffen's review (fbf479350c4eab48d0db74b6d3e23d5aa5f31932)
README.md
CHANGED
@@ -7,4 +7,46 @@ sdk: static
|
|
7 |
pinned: false
|
8 |
---
|
9 |
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
pinned: false
|
8 |
---
|
9 |
|
10 |
+
# About Sinequa
|
11 |
+
|
12 |
+
Sinequa provides an Enterprise Search solution that lets you search through your company's internal documents. It uses Neural Search to provide the most relevant content for your search request.
|
13 |
+
|
14 |
+
# Neural Search models
|
15 |
+
|
16 |
+
Sinequa Search uses on a technology called Neural Search. Neural Search is an hybrid search solution based on both Keyword Search and Vector Searched.
|
17 |
+
This search workflow implies two types of models for which we deliver various version here.
|
18 |
+
|
19 |
+
The two collections below bring together the recommended model combinations for English only and multilingual content.
|
20 |
+
|
21 |
+
## Vectorizer
|
22 |
+
|
23 |
+
Vectorizers are models which produce an embedding vector given a passage or a query. The passage vectors are stored in our vector index and the
|
24 |
+
query vector is used at query time to look up relevant passages in the index.
|
25 |
+
|
26 |
+
Here is an overview of the models we deliver publicly.
|
27 |
+
|
28 |
+
| Model | Languages | Relevance | Inference Time | GPU Memory |
|
29 |
+
|--------------------------------|-----------------------------|-----------|----------------|------------|
|
30 |
+
| vectorizer-v1-S-en | en | 0.456 | 52 ms | 330 MiB |
|
31 |
+
| vectorizer-v1-S-multilingual | de, en, es, fr | 0.448 | 51 ms | 580 MiB |
|
32 |
+
| vectorizer.vanilla | en | 0.639 | 53 ms | 330 MiB |
|
33 |
+
| vectorizer.raspberry | de, en, es, fr, it, ja, nl, pt, zs | 0.613 | 52 ms | 610 MiB |
|
34 |
+
| vectorizer.hazelnut | de, en, es, fr, it, ja, nl, pt, zs, pl | 0.590 | 52 ms | 610 MiB |
|
35 |
+
| vectorizer.guava | de, en, es, fr, it, ja, nl, pt, zs, zh-trad, pl | 0.616 | 52 ms | 610 MiB |
|
36 |
+
|
37 |
+
## Passage Ranker
|
38 |
+
|
39 |
+
Passage Rankers are models which produce a relevance score given a query-passage pair and is used to order search results coming from Keyword and Vector search.
|
40 |
+
|
41 |
+
Here is an overview of the models we deliver publicly.
|
42 |
+
|
43 |
+
| Model | Languages | Relevance | Inference Time | GPU Memory |
|
44 |
+
|---------------------------------|-----------------------------|-----------|----------------|------------|
|
45 |
+
| passage-ranker-v1-XS-en | en | 0.438 | 20 ms | 170 MiB |
|
46 |
+
| passage-ranker-v1-XS-multilingual | de, en, es, fr | 0.453 | 21 ms | 300 MiB |
|
47 |
+
| passage-ranker-v1-L-en | en | 0.466 | 356 ms | 1060 MiB |
|
48 |
+
| passage-ranker-v1-L-multilingual | de, en, es, fr | 0.471 | 357 ms | 1130 MiB |
|
49 |
+
| passage-ranker.chocolate | en | 0.484 | 64 ms | 550 MiB |
|
50 |
+
| passage-ranker.strawberry | de, en, es, fr, it, ja, nl, pt, zs | 0.451 | 63 ms | 1060 MiB |
|
51 |
+
| passage-ranker.mango | de, en, es, fr, it, ja, nl, pt, zs | 0.480 | 358 ms | 1070 MiB |
|
52 |
+
| passage-ranker.pistachio | de, en, es, fr, it, ja, nl, pt, zs, pl | 0.380 | 358 ms | 1070 MiB |
|