loic-dagnas-sinequa commited on
Commit
c4301a8
·
verified ·
1 Parent(s): bb0e805
Files changed (1) hide show
  1. README.md +43 -1
README.md CHANGED
@@ -7,4 +7,46 @@ sdk: static
7
  pinned: false
8
  ---
9
 
10
- Edit this `README.md` markdown file to author your organization card.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  pinned: false
8
  ---
9
 
10
+ # About Sinequa
11
+
12
+ Sinequa provides an Enterprise Search solution that lets you search through your company's internal documents. It uses Neural Search to provide the most relevant content for your search request.
13
+
14
+ # Neural Search models
15
+
16
+ Sinequa Search uses on a technology called Neural Search. Neural Search is an hybrid search solution based on both Keyword Search and Vector Searched.
17
+ This search workflow implies two types of models for which we deliver various version here.
18
+
19
+ The two collections below bring together the recommended model combinations for English only and multilingual content.
20
+
21
+ ## Vectorizer
22
+
23
+ Vectorizers are models which produce an embedding vector given a passage or a query. The passage vectors are stored in our vector index and the
24
+ query vector is used at query time to look up relevant passages in the index.
25
+
26
+ Here is an overview of the models we deliver publicly.
27
+
28
+ | Model | Languages | Relevance | Inference Time | GPU Memory |
29
+ |--------------------------------|-----------------------------|-----------|----------------|------------|
30
+ | vectorizer-v1-S-en | en | 0.456 | 52 ms | 330 MiB |
31
+ | vectorizer-v1-S-multilingual | de, en, es, fr | 0.448 | 51 ms | 580 MiB |
32
+ | vectorizer.vanilla | en | 0.639 | 53 ms | 330 MiB |
33
+ | vectorizer.raspberry | de, en, es, fr, it, ja, nl, pt, zs | 0.613 | 52 ms | 610 MiB |
34
+ | vectorizer.hazelnut | de, en, es, fr, it, ja, nl, pt, zs, pl | 0.590 | 52 ms | 610 MiB |
35
+ | vectorizer.guava | de, en, es, fr, it, ja, nl, pt, zs, zh-trad, pl | 0.616 | 52 ms | 610 MiB |
36
+
37
+ ## Passage Ranker
38
+
39
+ Passage Rankers are models which produce a relevance score given a query-passage pair and is used to order search results coming from Keyword and Vector search.
40
+
41
+ Here is an overview of the models we deliver publicly.
42
+
43
+ | Model | Languages | Relevance | Inference Time | GPU Memory |
44
+ |---------------------------------|-----------------------------|-----------|----------------|------------|
45
+ | passage-ranker-v1-XS-en | en | 0.438 | 20 ms | 170 MiB |
46
+ | passage-ranker-v1-XS-multilingual | de, en, es, fr | 0.453 | 21 ms | 300 MiB |
47
+ | passage-ranker-v1-L-en | en | 0.466 | 356 ms | 1060 MiB |
48
+ | passage-ranker-v1-L-multilingual | de, en, es, fr | 0.471 | 357 ms | 1130 MiB |
49
+ | passage-ranker.chocolate | en | 0.484 | 64 ms | 550 MiB |
50
+ | passage-ranker.strawberry | de, en, es, fr, it, ja, nl, pt, zs | 0.451 | 63 ms | 1060 MiB |
51
+ | passage-ranker.mango | de, en, es, fr, it, ja, nl, pt, zs | 0.480 | 358 ms | 1070 MiB |
52
+ | passage-ranker.pistachio | de, en, es, fr, it, ja, nl, pt, zs, pl | 0.380 | 358 ms | 1070 MiB |