Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import VisionEncoderDecoderModel, AutoImageProcessor, BertTokenizerFast | |
import requests | |
from PIL import Image | |
urls = ['https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg', 'https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcSoolxi9yWGAT5SLZShv8vVd0bz47UWRzQC19fDTeE8GmGv_Rn-PCF1pP1rrUx8kOjA4gg&usqp=CAU', | |
'https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcRNYtTuSBpZPV_nkBYPMFwVVD9asZOPgHww4epu9EqWgDmXW--sE2o8og40ZfDGo87j5w&usqp=CAU'] | |
for idx, url in enumerate(urls): | |
image = Image.open(requests.get(url, stream=True).raw) | |
image.save(f"image_{idx}.png") | |
image_processor = AutoImageProcessor.from_pretrained("microsoft/swin-base-patch4-window7-224") | |
tokenizer = tokenizer =BertTokenizerFast.from_pretrained("onlplab/alephbert-base") | |
model = VisionEncoderDecoderModel.from_pretrained("sivan22/hdd-words-ocr") | |
def process_image(image): | |
# prepare image | |
pixel_values = image_processor(image, return_tensors="pt").pixel_values | |
# generate (no beam search) | |
generated_ids = model.generate(pixel_values) | |
# decode | |
generated_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) | |
return generated_text | |
title = "讛讚讙诪讛: 驻注谞讜讞 讻转讘 讬讚 讘讗诪爪注讜转 讘讬谞讛 诪诇讗讻讜转讬转" | |
description = "注诇 讘住讬住 诪讜讚诇 swin 讘爪讚 讛转诪讜谞讛, 讜诪讜讚诇 alephbert 讘爪讚 讛讟拽住讟." | |
article = "<p style='text-align: center'>sivan22</p>" | |
examples =[["image_0.png"], ["image_1.png"], ["image_2.png"]] | |
#css = """.output_image, .input_image {height: 600px !important}""" | |
iface = gr.Interface(fn=process_image, | |
inputs=gr.inputs.Image(type="pil"), | |
outputs=gr.outputs.Textbox(), | |
title=title, | |
description=description, | |
article=article, | |
examples=examples) | |
iface.launch(debug=True) |