mervenoyan commited on
Commit
860e9cd
·
1 Parent(s): c7ed491

adjustments

Browse files
Files changed (2) hide show
  1. app.py +5 -21
  2. gradio_queue.db +0 -0
app.py CHANGED
@@ -2,19 +2,7 @@ import numpy as np
2
  import matplotlib.pyplot as plt
3
  from threading import Thread
4
  from matplotlib.colors import ListedColormap
5
- from sklearn.model_selection import train_test_split
6
- from sklearn.preprocessing import StandardScaler
7
  from sklearn.datasets import make_moons, make_circles, make_classification
8
- from sklearn.neural_network import MLPClassifier
9
- from sklearn.neighbors import KNeighborsClassifier
10
- from sklearn.svm import SVC
11
- from sklearn.gaussian_process import GaussianProcessClassifier
12
- from sklearn.gaussian_process.kernels import RBF
13
- from sklearn.tree import DecisionTreeClassifier
14
- from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier
15
- from sklearn.naive_bayes import GaussianNB
16
- from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
17
- from sklearn.inspection import DecisionBoundaryDisplay
18
  from sklearn.datasets import make_blobs, make_circles, make_moons
19
  import gradio as gr
20
  import math
@@ -33,10 +21,6 @@ from sklearn.kernel_approximation import Nystroem
33
  from sklearn.pipeline import make_pipeline
34
 
35
 
36
- ### DATASETS
37
-
38
- def normalize(X):
39
- return StandardScaler().fit_transform(X)
40
 
41
  # Example settings
42
  n_samples = 300
@@ -108,7 +92,7 @@ DATASETS = [
108
  ###########
109
 
110
  #### PLOT
111
- FIGSIZE = 7,7
112
  figure = plt.figure(figsize=(25, 10))
113
  i = 1
114
 
@@ -136,13 +120,13 @@ def train_models(selected_data, clf_name):
136
  y_pred = clf.fit(X).predict(X)
137
 
138
  # plot the levels lines and the points
139
- if clf_name != "Local Outlier Factor": # LOF does not implement predict
140
  Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
141
  Z = Z.reshape(xx.shape)
142
- plt.contour(xx, yy, Z, levels=[0], linewidths=2, colors="black")
143
 
144
  colors = np.array(["#377eb8", "#ff7f00"])
145
- plt.scatter(X[:, 0], X[:, 1], s=10, color=colors[(y_pred + 1) // 2])
146
 
147
  plt.xlim(-7, 7)
148
  plt.ylim(-7, 7)
@@ -153,7 +137,7 @@ def train_models(selected_data, clf_name):
153
  0.01,
154
  ("%.2fs" % (t1 - t0)).lstrip("0"),
155
  transform=plt.gca().transAxes,
156
- size=15,
157
  horizontalalignment="right",
158
  )
159
  plot_num += 1
 
2
  import matplotlib.pyplot as plt
3
  from threading import Thread
4
  from matplotlib.colors import ListedColormap
 
 
5
  from sklearn.datasets import make_moons, make_circles, make_classification
 
 
 
 
 
 
 
 
 
 
6
  from sklearn.datasets import make_blobs, make_circles, make_moons
7
  import gradio as gr
8
  import math
 
21
  from sklearn.pipeline import make_pipeline
22
 
23
 
 
 
 
 
24
 
25
  # Example settings
26
  n_samples = 300
 
92
  ###########
93
 
94
  #### PLOT
95
+ FIGSIZE = 10,10
96
  figure = plt.figure(figsize=(25, 10))
97
  i = 1
98
 
 
120
  y_pred = clf.fit(X).predict(X)
121
 
122
  # plot the levels lines and the points
123
+ if clf_name != "Local Outlier Factor":
124
  Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
125
  Z = Z.reshape(xx.shape)
126
+ plt.contour(xx, yy, Z, levels=[0], linewidths=10, colors="black")
127
 
128
  colors = np.array(["#377eb8", "#ff7f00"])
129
+ plt.scatter(X[:, 0], X[:, 1], s=100, color=colors[(y_pred + 1) // 2])
130
 
131
  plt.xlim(-7, 7)
132
  plt.ylim(-7, 7)
 
137
  0.01,
138
  ("%.2fs" % (t1 - t0)).lstrip("0"),
139
  transform=plt.gca().transAxes,
140
+ size=60,
141
  horizontalalignment="right",
142
  )
143
  plot_num += 1
gradio_queue.db DELETED
Binary file (340 kB)