Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -20,10 +20,6 @@ from sklearn.linear_model import SGDOneClassSVM
|
|
20 |
from sklearn.kernel_approximation import Nystroem
|
21 |
from sklearn.pipeline import make_pipeline
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
#### MODELS
|
26 |
-
|
27 |
def get_groundtruth_model(X, labels):
|
28 |
# dummy model to show true label distribution
|
29 |
class Dummy:
|
@@ -31,24 +27,13 @@ def get_groundtruth_model(X, labels):
|
|
31 |
self.labels_ = labels
|
32 |
|
33 |
return Dummy(labels)
|
34 |
-
############
|
35 |
-
# Define datasets
|
36 |
-
# Example settings
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
|
41 |
#### PLOT
|
42 |
FIGSIZE = 10,10
|
43 |
figure = plt.figure(figsize=(25, 10))
|
44 |
-
i = 1
|
45 |
-
|
46 |
-
|
47 |
|
48 |
|
49 |
def train_models(input_data, outliers_fraction, n_samples, clf_name):
|
50 |
-
# n_samples=300
|
51 |
-
# outliers_fraction = 0.15
|
52 |
n_outliers = int(outliers_fraction * n_samples)
|
53 |
n_inliers = n_samples - n_outliers
|
54 |
blobs_params = dict(random_state=0, n_samples=n_inliers, n_features=2)
|
@@ -134,8 +119,6 @@ def train_models(input_data, outliers_fraction, n_samples, clf_name):
|
|
134 |
|
135 |
return plt
|
136 |
|
137 |
-
|
138 |
-
|
139 |
description = "Learn how different anomaly detection algorithms perform in different datasets."
|
140 |
|
141 |
def iter_grid(n_rows, n_cols):
|
|
|
20 |
from sklearn.kernel_approximation import Nystroem
|
21 |
from sklearn.pipeline import make_pipeline
|
22 |
|
|
|
|
|
|
|
|
|
23 |
def get_groundtruth_model(X, labels):
|
24 |
# dummy model to show true label distribution
|
25 |
class Dummy:
|
|
|
27 |
self.labels_ = labels
|
28 |
|
29 |
return Dummy(labels)
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
#### PLOT
|
32 |
FIGSIZE = 10,10
|
33 |
figure = plt.figure(figsize=(25, 10))
|
|
|
|
|
|
|
34 |
|
35 |
|
36 |
def train_models(input_data, outliers_fraction, n_samples, clf_name):
|
|
|
|
|
37 |
n_outliers = int(outliers_fraction * n_samples)
|
38 |
n_inliers = n_samples - n_outliers
|
39 |
blobs_params = dict(random_state=0, n_samples=n_inliers, n_features=2)
|
|
|
119 |
|
120 |
return plt
|
121 |
|
|
|
|
|
122 |
description = "Learn how different anomaly detection algorithms perform in different datasets."
|
123 |
|
124 |
def iter_grid(n_rows, n_cols):
|