Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,458 Bytes
1d24639 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional, Tuple, Union
import flax
import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import FrozenDict
from ..configuration_utils import ConfigMixin, flax_register_to_config
from ..utils import BaseOutput
from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps
from .modeling_flax_utils import FlaxModelMixin
from .unet_2d_blocks_flax import (
FlaxCrossAttnDownBlock2D,
FlaxDownBlock2D,
FlaxUNetMidBlock2DCrossAttn,
)
@flax.struct.dataclass
class FlaxControlNetOutput(BaseOutput):
"""
The output of [`FlaxControlNetModel`].
Args:
down_block_res_samples (`jnp.ndarray`):
mid_block_res_sample (`jnp.ndarray`):
"""
down_block_res_samples: jnp.ndarray
mid_block_res_sample: jnp.ndarray
class FlaxControlNetConditioningEmbedding(nn.Module):
conditioning_embedding_channels: int
block_out_channels: Tuple[int] = (16, 32, 96, 256)
dtype: jnp.dtype = jnp.float32
def setup(self):
self.conv_in = nn.Conv(
self.block_out_channels[0],
kernel_size=(3, 3),
padding=((1, 1), (1, 1)),
dtype=self.dtype,
)
blocks = []
for i in range(len(self.block_out_channels) - 1):
channel_in = self.block_out_channels[i]
channel_out = self.block_out_channels[i + 1]
conv1 = nn.Conv(
channel_in,
kernel_size=(3, 3),
padding=((1, 1), (1, 1)),
dtype=self.dtype,
)
blocks.append(conv1)
conv2 = nn.Conv(
channel_out,
kernel_size=(3, 3),
strides=(2, 2),
padding=((1, 1), (1, 1)),
dtype=self.dtype,
)
blocks.append(conv2)
self.blocks = blocks
self.conv_out = nn.Conv(
self.conditioning_embedding_channels,
kernel_size=(3, 3),
padding=((1, 1), (1, 1)),
kernel_init=nn.initializers.zeros_init(),
bias_init=nn.initializers.zeros_init(),
dtype=self.dtype,
)
def __call__(self, conditioning):
embedding = self.conv_in(conditioning)
embedding = nn.silu(embedding)
for block in self.blocks:
embedding = block(embedding)
embedding = nn.silu(embedding)
embedding = self.conv_out(embedding)
return embedding
@flax_register_to_config
class FlaxControlNetModel(nn.Module, FlaxModelMixin, ConfigMixin):
r"""
A ControlNet model.
This model inherits from [`FlaxModelMixin`]. Check the superclass documentation for it’s generic methods
implemented for all models (such as downloading or saving).
This model is also a Flax Linen [`flax.linen.Module`](https://flax.readthedocs.io/en/latest/flax.linen.html#module)
subclass. Use it as a regular Flax Linen module and refer to the Flax documentation for all matters related to its
general usage and behavior.
Inherent JAX features such as the following are supported:
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
Parameters:
sample_size (`int`, *optional*):
The size of the input sample.
in_channels (`int`, *optional*, defaults to 4):
The number of channels in the input sample.
down_block_types (`Tuple[str]`, *optional*, defaults to `("FlaxCrossAttnDownBlock2D", "FlaxCrossAttnDownBlock2D", "FlaxCrossAttnDownBlock2D", "FlaxDownBlock2D")`):
The tuple of downsample blocks to use.
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
The tuple of output channels for each block.
layers_per_block (`int`, *optional*, defaults to 2):
The number of layers per block.
attention_head_dim (`int` or `Tuple[int]`, *optional*, defaults to 8):
The dimension of the attention heads.
num_attention_heads (`int` or `Tuple[int]`, *optional*):
The number of attention heads.
cross_attention_dim (`int`, *optional*, defaults to 768):
The dimension of the cross attention features.
dropout (`float`, *optional*, defaults to 0):
Dropout probability for down, up and bottleneck blocks.
flip_sin_to_cos (`bool`, *optional*, defaults to `True`):
Whether to flip the sin to cos in the time embedding.
freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
controlnet_conditioning_channel_order (`str`, *optional*, defaults to `rgb`):
The channel order of conditional image. Will convert to `rgb` if it's `bgr`.
conditioning_embedding_out_channels (`tuple`, *optional*, defaults to `(16, 32, 96, 256)`):
The tuple of output channel for each block in the `conditioning_embedding` layer.
"""
sample_size: int = 32
in_channels: int = 4
down_block_types: Tuple[str] = (
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"DownBlock2D",
)
only_cross_attention: Union[bool, Tuple[bool]] = False
block_out_channels: Tuple[int] = (320, 640, 1280, 1280)
layers_per_block: int = 2
attention_head_dim: Union[int, Tuple[int]] = 8
num_attention_heads: Optional[Union[int, Tuple[int]]] = None
cross_attention_dim: int = 1280
dropout: float = 0.0
use_linear_projection: bool = False
dtype: jnp.dtype = jnp.float32
flip_sin_to_cos: bool = True
freq_shift: int = 0
controlnet_conditioning_channel_order: str = "rgb"
conditioning_embedding_out_channels: Tuple[int] = (16, 32, 96, 256)
def init_weights(self, rng: jax.Array) -> FrozenDict:
# init input tensors
sample_shape = (1, self.in_channels, self.sample_size, self.sample_size)
sample = jnp.zeros(sample_shape, dtype=jnp.float32)
timesteps = jnp.ones((1,), dtype=jnp.int32)
encoder_hidden_states = jnp.zeros((1, 1, self.cross_attention_dim), dtype=jnp.float32)
controlnet_cond_shape = (1, 3, self.sample_size * 8, self.sample_size * 8)
controlnet_cond = jnp.zeros(controlnet_cond_shape, dtype=jnp.float32)
params_rng, dropout_rng = jax.random.split(rng)
rngs = {"params": params_rng, "dropout": dropout_rng}
return self.init(rngs, sample, timesteps, encoder_hidden_states, controlnet_cond)["params"]
def setup(self):
block_out_channels = self.block_out_channels
time_embed_dim = block_out_channels[0] * 4
# If `num_attention_heads` is not defined (which is the case for most models)
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
# The reason for this behavior is to correct for incorrectly named variables that were introduced
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
# which is why we correct for the naming here.
num_attention_heads = self.num_attention_heads or self.attention_head_dim
# input
self.conv_in = nn.Conv(
block_out_channels[0],
kernel_size=(3, 3),
strides=(1, 1),
padding=((1, 1), (1, 1)),
dtype=self.dtype,
)
# time
self.time_proj = FlaxTimesteps(
block_out_channels[0], flip_sin_to_cos=self.flip_sin_to_cos, freq_shift=self.config.freq_shift
)
self.time_embedding = FlaxTimestepEmbedding(time_embed_dim, dtype=self.dtype)
self.controlnet_cond_embedding = FlaxControlNetConditioningEmbedding(
conditioning_embedding_channels=block_out_channels[0],
block_out_channels=self.conditioning_embedding_out_channels,
)
only_cross_attention = self.only_cross_attention
if isinstance(only_cross_attention, bool):
only_cross_attention = (only_cross_attention,) * len(self.down_block_types)
if isinstance(num_attention_heads, int):
num_attention_heads = (num_attention_heads,) * len(self.down_block_types)
# down
down_blocks = []
controlnet_down_blocks = []
output_channel = block_out_channels[0]
controlnet_block = nn.Conv(
output_channel,
kernel_size=(1, 1),
padding="VALID",
kernel_init=nn.initializers.zeros_init(),
bias_init=nn.initializers.zeros_init(),
dtype=self.dtype,
)
controlnet_down_blocks.append(controlnet_block)
for i, down_block_type in enumerate(self.down_block_types):
input_channel = output_channel
output_channel = block_out_channels[i]
is_final_block = i == len(block_out_channels) - 1
if down_block_type == "CrossAttnDownBlock2D":
down_block = FlaxCrossAttnDownBlock2D(
in_channels=input_channel,
out_channels=output_channel,
dropout=self.dropout,
num_layers=self.layers_per_block,
num_attention_heads=num_attention_heads[i],
add_downsample=not is_final_block,
use_linear_projection=self.use_linear_projection,
only_cross_attention=only_cross_attention[i],
dtype=self.dtype,
)
else:
down_block = FlaxDownBlock2D(
in_channels=input_channel,
out_channels=output_channel,
dropout=self.dropout,
num_layers=self.layers_per_block,
add_downsample=not is_final_block,
dtype=self.dtype,
)
down_blocks.append(down_block)
for _ in range(self.layers_per_block):
controlnet_block = nn.Conv(
output_channel,
kernel_size=(1, 1),
padding="VALID",
kernel_init=nn.initializers.zeros_init(),
bias_init=nn.initializers.zeros_init(),
dtype=self.dtype,
)
controlnet_down_blocks.append(controlnet_block)
if not is_final_block:
controlnet_block = nn.Conv(
output_channel,
kernel_size=(1, 1),
padding="VALID",
kernel_init=nn.initializers.zeros_init(),
bias_init=nn.initializers.zeros_init(),
dtype=self.dtype,
)
controlnet_down_blocks.append(controlnet_block)
self.down_blocks = down_blocks
self.controlnet_down_blocks = controlnet_down_blocks
# mid
mid_block_channel = block_out_channels[-1]
self.mid_block = FlaxUNetMidBlock2DCrossAttn(
in_channels=mid_block_channel,
dropout=self.dropout,
num_attention_heads=num_attention_heads[-1],
use_linear_projection=self.use_linear_projection,
dtype=self.dtype,
)
self.controlnet_mid_block = nn.Conv(
mid_block_channel,
kernel_size=(1, 1),
padding="VALID",
kernel_init=nn.initializers.zeros_init(),
bias_init=nn.initializers.zeros_init(),
dtype=self.dtype,
)
def __call__(
self,
sample,
timesteps,
encoder_hidden_states,
controlnet_cond,
conditioning_scale: float = 1.0,
return_dict: bool = True,
train: bool = False,
) -> Union[FlaxControlNetOutput, Tuple]:
r"""
Args:
sample (`jnp.ndarray`): (batch, channel, height, width) noisy inputs tensor
timestep (`jnp.ndarray` or `float` or `int`): timesteps
encoder_hidden_states (`jnp.ndarray`): (batch_size, sequence_length, hidden_size) encoder hidden states
controlnet_cond (`jnp.ndarray`): (batch, channel, height, width) the conditional input tensor
conditioning_scale: (`float`) the scale factor for controlnet outputs
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`models.unet_2d_condition_flax.FlaxUNet2DConditionOutput`] instead of a
plain tuple.
train (`bool`, *optional*, defaults to `False`):
Use deterministic functions and disable dropout when not training.
Returns:
[`~models.unet_2d_condition_flax.FlaxUNet2DConditionOutput`] or `tuple`:
[`~models.unet_2d_condition_flax.FlaxUNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`.
When returning a tuple, the first element is the sample tensor.
"""
channel_order = self.controlnet_conditioning_channel_order
if channel_order == "bgr":
controlnet_cond = jnp.flip(controlnet_cond, axis=1)
# 1. time
if not isinstance(timesteps, jnp.ndarray):
timesteps = jnp.array([timesteps], dtype=jnp.int32)
elif isinstance(timesteps, jnp.ndarray) and len(timesteps.shape) == 0:
timesteps = timesteps.astype(dtype=jnp.float32)
timesteps = jnp.expand_dims(timesteps, 0)
t_emb = self.time_proj(timesteps)
t_emb = self.time_embedding(t_emb)
# 2. pre-process
sample = jnp.transpose(sample, (0, 2, 3, 1))
sample = self.conv_in(sample)
controlnet_cond = jnp.transpose(controlnet_cond, (0, 2, 3, 1))
controlnet_cond = self.controlnet_cond_embedding(controlnet_cond)
sample += controlnet_cond
# 3. down
down_block_res_samples = (sample,)
for down_block in self.down_blocks:
if isinstance(down_block, FlaxCrossAttnDownBlock2D):
sample, res_samples = down_block(sample, t_emb, encoder_hidden_states, deterministic=not train)
else:
sample, res_samples = down_block(sample, t_emb, deterministic=not train)
down_block_res_samples += res_samples
# 4. mid
sample = self.mid_block(sample, t_emb, encoder_hidden_states, deterministic=not train)
# 5. contronet blocks
controlnet_down_block_res_samples = ()
for down_block_res_sample, controlnet_block in zip(down_block_res_samples, self.controlnet_down_blocks):
down_block_res_sample = controlnet_block(down_block_res_sample)
controlnet_down_block_res_samples += (down_block_res_sample,)
down_block_res_samples = controlnet_down_block_res_samples
mid_block_res_sample = self.controlnet_mid_block(sample)
# 6. scaling
down_block_res_samples = [sample * conditioning_scale for sample in down_block_res_samples]
mid_block_res_sample *= conditioning_scale
if not return_dict:
return (down_block_res_samples, mid_block_res_sample)
return FlaxControlNetOutput(
down_block_res_samples=down_block_res_samples, mid_block_res_sample=mid_block_res_sample
)
|