Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2023 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from dataclasses import dataclass | |
from typing import Optional, Tuple | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
from ..utils import BaseOutput, is_torch_version | |
from ..utils.torch_utils import randn_tensor | |
from .activations import get_activation | |
from .attention_processor import SpatialNorm | |
from .unet_2d_blocks import AutoencoderTinyBlock, UNetMidBlock2D, get_down_block, get_up_block | |
class DecoderOutput(BaseOutput): | |
r""" | |
Output of decoding method. | |
Args: | |
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): | |
The decoded output sample from the last layer of the model. | |
""" | |
sample: torch.FloatTensor | |
class Encoder(nn.Module): | |
r""" | |
The `Encoder` layer of a variational autoencoder that encodes its input into a latent representation. | |
Args: | |
in_channels (`int`, *optional*, defaults to 3): | |
The number of input channels. | |
out_channels (`int`, *optional*, defaults to 3): | |
The number of output channels. | |
down_block_types (`Tuple[str, ...]`, *optional*, defaults to `("DownEncoderBlock2D",)`): | |
The types of down blocks to use. See `~diffusers.models.unet_2d_blocks.get_down_block` for available | |
options. | |
block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`): | |
The number of output channels for each block. | |
layers_per_block (`int`, *optional*, defaults to 2): | |
The number of layers per block. | |
norm_num_groups (`int`, *optional*, defaults to 32): | |
The number of groups for normalization. | |
act_fn (`str`, *optional*, defaults to `"silu"`): | |
The activation function to use. See `~diffusers.models.activations.get_activation` for available options. | |
double_z (`bool`, *optional*, defaults to `True`): | |
Whether to double the number of output channels for the last block. | |
""" | |
def __init__( | |
self, | |
in_channels: int = 3, | |
out_channels: int = 3, | |
down_block_types: Tuple[str, ...] = ("DownEncoderBlock2D",), | |
block_out_channels: Tuple[int, ...] = (64,), | |
layers_per_block: int = 2, | |
norm_num_groups: int = 32, | |
act_fn: str = "silu", | |
double_z: bool = True, | |
): | |
super().__init__() | |
self.layers_per_block = layers_per_block | |
self.conv_in = nn.Conv2d( | |
in_channels, | |
block_out_channels[0], | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
) | |
self.mid_block = None | |
self.down_blocks = nn.ModuleList([]) | |
# down | |
output_channel = block_out_channels[0] | |
for i, down_block_type in enumerate(down_block_types): | |
input_channel = output_channel | |
output_channel = block_out_channels[i] | |
is_final_block = i == len(block_out_channels) - 1 | |
down_block = get_down_block( | |
down_block_type, | |
num_layers=self.layers_per_block, | |
in_channels=input_channel, | |
out_channels=output_channel, | |
add_downsample=not is_final_block, | |
resnet_eps=1e-6, | |
downsample_padding=0, | |
resnet_act_fn=act_fn, | |
resnet_groups=norm_num_groups, | |
attention_head_dim=output_channel, | |
temb_channels=None, | |
) | |
self.down_blocks.append(down_block) | |
# mid | |
self.mid_block = UNetMidBlock2D( | |
in_channels=block_out_channels[-1], | |
resnet_eps=1e-6, | |
resnet_act_fn=act_fn, | |
output_scale_factor=1, | |
resnet_time_scale_shift="default", | |
attention_head_dim=block_out_channels[-1], | |
resnet_groups=norm_num_groups, | |
temb_channels=None, | |
) | |
# out | |
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[-1], num_groups=norm_num_groups, eps=1e-6) | |
self.conv_act = nn.SiLU() | |
conv_out_channels = 2 * out_channels if double_z else out_channels | |
self.conv_out = nn.Conv2d(block_out_channels[-1], conv_out_channels, 3, padding=1) | |
self.gradient_checkpointing = False | |
def forward(self, sample: torch.FloatTensor) -> torch.FloatTensor: | |
r"""The forward method of the `Encoder` class.""" | |
sample = self.conv_in(sample) | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs) | |
return custom_forward | |
# down | |
if is_torch_version(">=", "1.11.0"): | |
for down_block in self.down_blocks: | |
sample = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(down_block), sample, use_reentrant=False | |
) | |
# middle | |
sample = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(self.mid_block), sample, use_reentrant=False | |
) | |
else: | |
for down_block in self.down_blocks: | |
sample = torch.utils.checkpoint.checkpoint(create_custom_forward(down_block), sample) | |
# middle | |
sample = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block), sample) | |
else: | |
# down | |
for down_block in self.down_blocks: | |
sample = down_block(sample) | |
# middle | |
sample = self.mid_block(sample) | |
# post-process | |
sample = self.conv_norm_out(sample) | |
sample = self.conv_act(sample) | |
sample = self.conv_out(sample) | |
return sample | |
class Decoder(nn.Module): | |
r""" | |
The `Decoder` layer of a variational autoencoder that decodes its latent representation into an output sample. | |
Args: | |
in_channels (`int`, *optional*, defaults to 3): | |
The number of input channels. | |
out_channels (`int`, *optional*, defaults to 3): | |
The number of output channels. | |
up_block_types (`Tuple[str, ...]`, *optional*, defaults to `("UpDecoderBlock2D",)`): | |
The types of up blocks to use. See `~diffusers.models.unet_2d_blocks.get_up_block` for available options. | |
block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`): | |
The number of output channels for each block. | |
layers_per_block (`int`, *optional*, defaults to 2): | |
The number of layers per block. | |
norm_num_groups (`int`, *optional*, defaults to 32): | |
The number of groups for normalization. | |
act_fn (`str`, *optional*, defaults to `"silu"`): | |
The activation function to use. See `~diffusers.models.activations.get_activation` for available options. | |
norm_type (`str`, *optional*, defaults to `"group"`): | |
The normalization type to use. Can be either `"group"` or `"spatial"`. | |
""" | |
def __init__( | |
self, | |
in_channels: int = 3, | |
out_channels: int = 3, | |
up_block_types: Tuple[str, ...] = ("UpDecoderBlock2D",), | |
block_out_channels: Tuple[int, ...] = (64,), | |
layers_per_block: int = 2, | |
norm_num_groups: int = 32, | |
act_fn: str = "silu", | |
norm_type: str = "group", # group, spatial | |
): | |
super().__init__() | |
self.layers_per_block = layers_per_block | |
self.conv_in = nn.Conv2d( | |
in_channels, | |
block_out_channels[-1], | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
) | |
self.mid_block = None | |
self.up_blocks = nn.ModuleList([]) | |
temb_channels = in_channels if norm_type == "spatial" else None | |
# mid | |
self.mid_block = UNetMidBlock2D( | |
in_channels=block_out_channels[-1], | |
resnet_eps=1e-6, | |
resnet_act_fn=act_fn, | |
output_scale_factor=1, | |
resnet_time_scale_shift="default" if norm_type == "group" else norm_type, | |
attention_head_dim=block_out_channels[-1], | |
resnet_groups=norm_num_groups, | |
temb_channels=temb_channels, | |
) | |
# up | |
reversed_block_out_channels = list(reversed(block_out_channels)) | |
output_channel = reversed_block_out_channels[0] | |
for i, up_block_type in enumerate(up_block_types): | |
prev_output_channel = output_channel | |
output_channel = reversed_block_out_channels[i] | |
is_final_block = i == len(block_out_channels) - 1 | |
up_block = get_up_block( | |
up_block_type, | |
num_layers=self.layers_per_block + 1, | |
in_channels=prev_output_channel, | |
out_channels=output_channel, | |
prev_output_channel=None, | |
add_upsample=not is_final_block, | |
resnet_eps=1e-6, | |
resnet_act_fn=act_fn, | |
resnet_groups=norm_num_groups, | |
attention_head_dim=output_channel, | |
temb_channels=temb_channels, | |
resnet_time_scale_shift=norm_type, | |
) | |
self.up_blocks.append(up_block) | |
prev_output_channel = output_channel | |
# out | |
if norm_type == "spatial": | |
self.conv_norm_out = SpatialNorm(block_out_channels[0], temb_channels) | |
else: | |
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6) | |
self.conv_act = nn.SiLU() | |
self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1) | |
self.gradient_checkpointing = False | |
def forward( | |
self, sample: torch.FloatTensor, latent_embeds: Optional[torch.FloatTensor] = None | |
) -> torch.FloatTensor: | |
r"""The forward method of the `Decoder` class.""" | |
sample = self.conv_in(sample) | |
upscale_dtype = next(iter(self.up_blocks.parameters())).dtype | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs) | |
return custom_forward | |
if is_torch_version(">=", "1.11.0"): | |
# middle | |
sample = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(self.mid_block), sample, latent_embeds, use_reentrant=False | |
) | |
sample = sample.to(upscale_dtype) | |
# up | |
for up_block in self.up_blocks: | |
sample = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(up_block), sample, latent_embeds, use_reentrant=False | |
) | |
else: | |
# middle | |
sample = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(self.mid_block), sample, latent_embeds | |
) | |
sample = sample.to(upscale_dtype) | |
# up | |
for up_block in self.up_blocks: | |
sample = torch.utils.checkpoint.checkpoint(create_custom_forward(up_block), sample, latent_embeds) | |
else: | |
# middle | |
sample = self.mid_block(sample, latent_embeds) | |
sample = sample.to(upscale_dtype) | |
# up | |
for up_block in self.up_blocks: | |
sample = up_block(sample, latent_embeds) | |
# post-process | |
if latent_embeds is None: | |
sample = self.conv_norm_out(sample) | |
else: | |
sample = self.conv_norm_out(sample, latent_embeds) | |
sample = self.conv_act(sample) | |
sample = self.conv_out(sample) | |
return sample | |
class UpSample(nn.Module): | |
r""" | |
The `UpSample` layer of a variational autoencoder that upsamples its input. | |
Args: | |
in_channels (`int`, *optional*, defaults to 3): | |
The number of input channels. | |
out_channels (`int`, *optional*, defaults to 3): | |
The number of output channels. | |
""" | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
) -> None: | |
super().__init__() | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
self.deconv = nn.ConvTranspose2d(in_channels, out_channels, kernel_size=4, stride=2, padding=1) | |
def forward(self, x: torch.FloatTensor) -> torch.FloatTensor: | |
r"""The forward method of the `UpSample` class.""" | |
x = torch.relu(x) | |
x = self.deconv(x) | |
return x | |
class MaskConditionEncoder(nn.Module): | |
""" | |
used in AsymmetricAutoencoderKL | |
""" | |
def __init__( | |
self, | |
in_ch: int, | |
out_ch: int = 192, | |
res_ch: int = 768, | |
stride: int = 16, | |
) -> None: | |
super().__init__() | |
channels = [] | |
while stride > 1: | |
stride = stride // 2 | |
in_ch_ = out_ch * 2 | |
if out_ch > res_ch: | |
out_ch = res_ch | |
if stride == 1: | |
in_ch_ = res_ch | |
channels.append((in_ch_, out_ch)) | |
out_ch *= 2 | |
out_channels = [] | |
for _in_ch, _out_ch in channels: | |
out_channels.append(_out_ch) | |
out_channels.append(channels[-1][0]) | |
layers = [] | |
in_ch_ = in_ch | |
for l in range(len(out_channels)): | |
out_ch_ = out_channels[l] | |
if l == 0 or l == 1: | |
layers.append(nn.Conv2d(in_ch_, out_ch_, kernel_size=3, stride=1, padding=1)) | |
else: | |
layers.append(nn.Conv2d(in_ch_, out_ch_, kernel_size=4, stride=2, padding=1)) | |
in_ch_ = out_ch_ | |
self.layers = nn.Sequential(*layers) | |
def forward(self, x: torch.FloatTensor, mask=None) -> torch.FloatTensor: | |
r"""The forward method of the `MaskConditionEncoder` class.""" | |
out = {} | |
for l in range(len(self.layers)): | |
layer = self.layers[l] | |
x = layer(x) | |
out[str(tuple(x.shape))] = x | |
x = torch.relu(x) | |
return out | |
class MaskConditionDecoder(nn.Module): | |
r"""The `MaskConditionDecoder` should be used in combination with [`AsymmetricAutoencoderKL`] to enhance the model's | |
decoder with a conditioner on the mask and masked image. | |
Args: | |
in_channels (`int`, *optional*, defaults to 3): | |
The number of input channels. | |
out_channels (`int`, *optional*, defaults to 3): | |
The number of output channels. | |
up_block_types (`Tuple[str, ...]`, *optional*, defaults to `("UpDecoderBlock2D",)`): | |
The types of up blocks to use. See `~diffusers.models.unet_2d_blocks.get_up_block` for available options. | |
block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`): | |
The number of output channels for each block. | |
layers_per_block (`int`, *optional*, defaults to 2): | |
The number of layers per block. | |
norm_num_groups (`int`, *optional*, defaults to 32): | |
The number of groups for normalization. | |
act_fn (`str`, *optional*, defaults to `"silu"`): | |
The activation function to use. See `~diffusers.models.activations.get_activation` for available options. | |
norm_type (`str`, *optional*, defaults to `"group"`): | |
The normalization type to use. Can be either `"group"` or `"spatial"`. | |
""" | |
def __init__( | |
self, | |
in_channels: int = 3, | |
out_channels: int = 3, | |
up_block_types: Tuple[str, ...] = ("UpDecoderBlock2D",), | |
block_out_channels: Tuple[int, ...] = (64,), | |
layers_per_block: int = 2, | |
norm_num_groups: int = 32, | |
act_fn: str = "silu", | |
norm_type: str = "group", # group, spatial | |
): | |
super().__init__() | |
self.layers_per_block = layers_per_block | |
self.conv_in = nn.Conv2d( | |
in_channels, | |
block_out_channels[-1], | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
) | |
self.mid_block = None | |
self.up_blocks = nn.ModuleList([]) | |
temb_channels = in_channels if norm_type == "spatial" else None | |
# mid | |
self.mid_block = UNetMidBlock2D( | |
in_channels=block_out_channels[-1], | |
resnet_eps=1e-6, | |
resnet_act_fn=act_fn, | |
output_scale_factor=1, | |
resnet_time_scale_shift="default" if norm_type == "group" else norm_type, | |
attention_head_dim=block_out_channels[-1], | |
resnet_groups=norm_num_groups, | |
temb_channels=temb_channels, | |
) | |
# up | |
reversed_block_out_channels = list(reversed(block_out_channels)) | |
output_channel = reversed_block_out_channels[0] | |
for i, up_block_type in enumerate(up_block_types): | |
prev_output_channel = output_channel | |
output_channel = reversed_block_out_channels[i] | |
is_final_block = i == len(block_out_channels) - 1 | |
up_block = get_up_block( | |
up_block_type, | |
num_layers=self.layers_per_block + 1, | |
in_channels=prev_output_channel, | |
out_channels=output_channel, | |
prev_output_channel=None, | |
add_upsample=not is_final_block, | |
resnet_eps=1e-6, | |
resnet_act_fn=act_fn, | |
resnet_groups=norm_num_groups, | |
attention_head_dim=output_channel, | |
temb_channels=temb_channels, | |
resnet_time_scale_shift=norm_type, | |
) | |
self.up_blocks.append(up_block) | |
prev_output_channel = output_channel | |
# condition encoder | |
self.condition_encoder = MaskConditionEncoder( | |
in_ch=out_channels, | |
out_ch=block_out_channels[0], | |
res_ch=block_out_channels[-1], | |
) | |
# out | |
if norm_type == "spatial": | |
self.conv_norm_out = SpatialNorm(block_out_channels[0], temb_channels) | |
else: | |
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6) | |
self.conv_act = nn.SiLU() | |
self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1) | |
self.gradient_checkpointing = False | |
def forward( | |
self, | |
z: torch.FloatTensor, | |
image: Optional[torch.FloatTensor] = None, | |
mask: Optional[torch.FloatTensor] = None, | |
latent_embeds: Optional[torch.FloatTensor] = None, | |
) -> torch.FloatTensor: | |
r"""The forward method of the `MaskConditionDecoder` class.""" | |
sample = z | |
sample = self.conv_in(sample) | |
upscale_dtype = next(iter(self.up_blocks.parameters())).dtype | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs) | |
return custom_forward | |
if is_torch_version(">=", "1.11.0"): | |
# middle | |
sample = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(self.mid_block), sample, latent_embeds, use_reentrant=False | |
) | |
sample = sample.to(upscale_dtype) | |
# condition encoder | |
if image is not None and mask is not None: | |
masked_image = (1 - mask) * image | |
im_x = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(self.condition_encoder), masked_image, mask, use_reentrant=False | |
) | |
# up | |
for up_block in self.up_blocks: | |
if image is not None and mask is not None: | |
sample_ = im_x[str(tuple(sample.shape))] | |
mask_ = nn.functional.interpolate(mask, size=sample.shape[-2:], mode="nearest") | |
sample = sample * mask_ + sample_ * (1 - mask_) | |
sample = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(up_block), sample, latent_embeds, use_reentrant=False | |
) | |
if image is not None and mask is not None: | |
sample = sample * mask + im_x[str(tuple(sample.shape))] * (1 - mask) | |
else: | |
# middle | |
sample = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(self.mid_block), sample, latent_embeds | |
) | |
sample = sample.to(upscale_dtype) | |
# condition encoder | |
if image is not None and mask is not None: | |
masked_image = (1 - mask) * image | |
im_x = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(self.condition_encoder), masked_image, mask | |
) | |
# up | |
for up_block in self.up_blocks: | |
if image is not None and mask is not None: | |
sample_ = im_x[str(tuple(sample.shape))] | |
mask_ = nn.functional.interpolate(mask, size=sample.shape[-2:], mode="nearest") | |
sample = sample * mask_ + sample_ * (1 - mask_) | |
sample = torch.utils.checkpoint.checkpoint(create_custom_forward(up_block), sample, latent_embeds) | |
if image is not None and mask is not None: | |
sample = sample * mask + im_x[str(tuple(sample.shape))] * (1 - mask) | |
else: | |
# middle | |
sample = self.mid_block(sample, latent_embeds) | |
sample = sample.to(upscale_dtype) | |
# condition encoder | |
if image is not None and mask is not None: | |
masked_image = (1 - mask) * image | |
im_x = self.condition_encoder(masked_image, mask) | |
# up | |
for up_block in self.up_blocks: | |
if image is not None and mask is not None: | |
sample_ = im_x[str(tuple(sample.shape))] | |
mask_ = nn.functional.interpolate(mask, size=sample.shape[-2:], mode="nearest") | |
sample = sample * mask_ + sample_ * (1 - mask_) | |
sample = up_block(sample, latent_embeds) | |
if image is not None and mask is not None: | |
sample = sample * mask + im_x[str(tuple(sample.shape))] * (1 - mask) | |
# post-process | |
if latent_embeds is None: | |
sample = self.conv_norm_out(sample) | |
else: | |
sample = self.conv_norm_out(sample, latent_embeds) | |
sample = self.conv_act(sample) | |
sample = self.conv_out(sample) | |
return sample | |
class VectorQuantizer(nn.Module): | |
""" | |
Improved version over VectorQuantizer, can be used as a drop-in replacement. Mostly avoids costly matrix | |
multiplications and allows for post-hoc remapping of indices. | |
""" | |
# NOTE: due to a bug the beta term was applied to the wrong term. for | |
# backwards compatibility we use the buggy version by default, but you can | |
# specify legacy=False to fix it. | |
def __init__( | |
self, | |
n_e: int, | |
vq_embed_dim: int, | |
beta: float, | |
remap=None, | |
unknown_index: str = "random", | |
sane_index_shape: bool = False, | |
legacy: bool = True, | |
): | |
super().__init__() | |
self.n_e = n_e | |
self.vq_embed_dim = vq_embed_dim | |
self.beta = beta | |
self.legacy = legacy | |
self.embedding = nn.Embedding(self.n_e, self.vq_embed_dim) | |
self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e) | |
self.remap = remap | |
if self.remap is not None: | |
self.register_buffer("used", torch.tensor(np.load(self.remap))) | |
self.used: torch.Tensor | |
self.re_embed = self.used.shape[0] | |
self.unknown_index = unknown_index # "random" or "extra" or integer | |
if self.unknown_index == "extra": | |
self.unknown_index = self.re_embed | |
self.re_embed = self.re_embed + 1 | |
print( | |
f"Remapping {self.n_e} indices to {self.re_embed} indices. " | |
f"Using {self.unknown_index} for unknown indices." | |
) | |
else: | |
self.re_embed = n_e | |
self.sane_index_shape = sane_index_shape | |
def remap_to_used(self, inds: torch.LongTensor) -> torch.LongTensor: | |
ishape = inds.shape | |
assert len(ishape) > 1 | |
inds = inds.reshape(ishape[0], -1) | |
used = self.used.to(inds) | |
match = (inds[:, :, None] == used[None, None, ...]).long() | |
new = match.argmax(-1) | |
unknown = match.sum(2) < 1 | |
if self.unknown_index == "random": | |
new[unknown] = torch.randint(0, self.re_embed, size=new[unknown].shape).to(device=new.device) | |
else: | |
new[unknown] = self.unknown_index | |
return new.reshape(ishape) | |
def unmap_to_all(self, inds: torch.LongTensor) -> torch.LongTensor: | |
ishape = inds.shape | |
assert len(ishape) > 1 | |
inds = inds.reshape(ishape[0], -1) | |
used = self.used.to(inds) | |
if self.re_embed > self.used.shape[0]: # extra token | |
inds[inds >= self.used.shape[0]] = 0 # simply set to zero | |
back = torch.gather(used[None, :][inds.shape[0] * [0], :], 1, inds) | |
return back.reshape(ishape) | |
def forward(self, z: torch.FloatTensor) -> Tuple[torch.FloatTensor, torch.FloatTensor, Tuple]: | |
# reshape z -> (batch, height, width, channel) and flatten | |
z = z.permute(0, 2, 3, 1).contiguous() | |
z_flattened = z.view(-1, self.vq_embed_dim) | |
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z | |
min_encoding_indices = torch.argmin(torch.cdist(z_flattened, self.embedding.weight), dim=1) | |
z_q = self.embedding(min_encoding_indices).view(z.shape) | |
perplexity = None | |
min_encodings = None | |
# compute loss for embedding | |
if not self.legacy: | |
loss = self.beta * torch.mean((z_q.detach() - z) ** 2) + torch.mean((z_q - z.detach()) ** 2) | |
else: | |
loss = torch.mean((z_q.detach() - z) ** 2) + self.beta * torch.mean((z_q - z.detach()) ** 2) | |
# preserve gradients | |
z_q: torch.FloatTensor = z + (z_q - z).detach() | |
# reshape back to match original input shape | |
z_q = z_q.permute(0, 3, 1, 2).contiguous() | |
if self.remap is not None: | |
min_encoding_indices = min_encoding_indices.reshape(z.shape[0], -1) # add batch axis | |
min_encoding_indices = self.remap_to_used(min_encoding_indices) | |
min_encoding_indices = min_encoding_indices.reshape(-1, 1) # flatten | |
if self.sane_index_shape: | |
min_encoding_indices = min_encoding_indices.reshape(z_q.shape[0], z_q.shape[2], z_q.shape[3]) | |
return z_q, loss, (perplexity, min_encodings, min_encoding_indices) | |
def get_codebook_entry(self, indices: torch.LongTensor, shape: Tuple[int, ...]) -> torch.FloatTensor: | |
# shape specifying (batch, height, width, channel) | |
if self.remap is not None: | |
indices = indices.reshape(shape[0], -1) # add batch axis | |
indices = self.unmap_to_all(indices) | |
indices = indices.reshape(-1) # flatten again | |
# get quantized latent vectors | |
z_q: torch.FloatTensor = self.embedding(indices) | |
if shape is not None: | |
z_q = z_q.view(shape) | |
# reshape back to match original input shape | |
z_q = z_q.permute(0, 3, 1, 2).contiguous() | |
return z_q | |
class DiagonalGaussianDistribution(object): | |
def __init__(self, parameters: torch.Tensor, deterministic: bool = False): | |
self.parameters = parameters | |
self.mean, self.logvar = torch.chunk(parameters, 2, dim=1) | |
self.logvar = torch.clamp(self.logvar, -30.0, 20.0) | |
self.deterministic = deterministic | |
self.std = torch.exp(0.5 * self.logvar) | |
self.var = torch.exp(self.logvar) | |
if self.deterministic: | |
self.var = self.std = torch.zeros_like( | |
self.mean, device=self.parameters.device, dtype=self.parameters.dtype | |
) | |
def sample(self, generator: Optional[torch.Generator] = None) -> torch.FloatTensor: | |
# make sure sample is on the same device as the parameters and has same dtype | |
sample = randn_tensor( | |
self.mean.shape, generator=generator, device=self.parameters.device, dtype=self.parameters.dtype | |
) | |
x = self.mean + self.std * sample | |
return x | |
def kl(self, other: "DiagonalGaussianDistribution" = None) -> torch.Tensor: | |
if self.deterministic: | |
return torch.Tensor([0.0]) | |
else: | |
if other is None: | |
return 0.5 * torch.sum(torch.pow(self.mean, 2) + self.var - 1.0 - self.logvar, dim=[1, 2, 3]) | |
else: | |
return 0.5 * torch.sum( | |
torch.pow(self.mean - other.mean, 2) / other.var | |
+ self.var / other.var | |
- 1.0 | |
- self.logvar | |
+ other.logvar, | |
dim=[1, 2, 3], | |
) | |
def nll(self, sample: torch.Tensor, dims: Tuple[int, ...] = [1, 2, 3]) -> torch.Tensor: | |
if self.deterministic: | |
return torch.Tensor([0.0]) | |
logtwopi = np.log(2.0 * np.pi) | |
return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var, dim=dims) | |
def mode(self) -> torch.Tensor: | |
return self.mean | |
class EncoderTiny(nn.Module): | |
r""" | |
The `EncoderTiny` layer is a simpler version of the `Encoder` layer. | |
Args: | |
in_channels (`int`): | |
The number of input channels. | |
out_channels (`int`): | |
The number of output channels. | |
num_blocks (`Tuple[int, ...]`): | |
Each value of the tuple represents a Conv2d layer followed by `value` number of `AutoencoderTinyBlock`'s to | |
use. | |
block_out_channels (`Tuple[int, ...]`): | |
The number of output channels for each block. | |
act_fn (`str`): | |
The activation function to use. See `~diffusers.models.activations.get_activation` for available options. | |
""" | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
num_blocks: Tuple[int, ...], | |
block_out_channels: Tuple[int, ...], | |
act_fn: str, | |
): | |
super().__init__() | |
layers = [] | |
for i, num_block in enumerate(num_blocks): | |
num_channels = block_out_channels[i] | |
if i == 0: | |
layers.append(nn.Conv2d(in_channels, num_channels, kernel_size=3, padding=1)) | |
else: | |
layers.append(nn.Conv2d(num_channels, num_channels, kernel_size=3, padding=1, stride=2, bias=False)) | |
for _ in range(num_block): | |
layers.append(AutoencoderTinyBlock(num_channels, num_channels, act_fn)) | |
layers.append(nn.Conv2d(block_out_channels[-1], out_channels, kernel_size=3, padding=1)) | |
self.layers = nn.Sequential(*layers) | |
self.gradient_checkpointing = False | |
def forward(self, x: torch.FloatTensor) -> torch.FloatTensor: | |
r"""The forward method of the `EncoderTiny` class.""" | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs) | |
return custom_forward | |
if is_torch_version(">=", "1.11.0"): | |
x = torch.utils.checkpoint.checkpoint(create_custom_forward(self.layers), x, use_reentrant=False) | |
else: | |
x = torch.utils.checkpoint.checkpoint(create_custom_forward(self.layers), x) | |
else: | |
# scale image from [-1, 1] to [0, 1] to match TAESD convention | |
x = self.layers(x.add(1).div(2)) | |
return x | |
class DecoderTiny(nn.Module): | |
r""" | |
The `DecoderTiny` layer is a simpler version of the `Decoder` layer. | |
Args: | |
in_channels (`int`): | |
The number of input channels. | |
out_channels (`int`): | |
The number of output channels. | |
num_blocks (`Tuple[int, ...]`): | |
Each value of the tuple represents a Conv2d layer followed by `value` number of `AutoencoderTinyBlock`'s to | |
use. | |
block_out_channels (`Tuple[int, ...]`): | |
The number of output channels for each block. | |
upsampling_scaling_factor (`int`): | |
The scaling factor to use for upsampling. | |
act_fn (`str`): | |
The activation function to use. See `~diffusers.models.activations.get_activation` for available options. | |
""" | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
num_blocks: Tuple[int, ...], | |
block_out_channels: Tuple[int, ...], | |
upsampling_scaling_factor: int, | |
act_fn: str, | |
): | |
super().__init__() | |
layers = [ | |
nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, padding=1), | |
get_activation(act_fn), | |
] | |
for i, num_block in enumerate(num_blocks): | |
is_final_block = i == (len(num_blocks) - 1) | |
num_channels = block_out_channels[i] | |
for _ in range(num_block): | |
layers.append(AutoencoderTinyBlock(num_channels, num_channels, act_fn)) | |
if not is_final_block: | |
layers.append(nn.Upsample(scale_factor=upsampling_scaling_factor)) | |
conv_out_channel = num_channels if not is_final_block else out_channels | |
layers.append(nn.Conv2d(num_channels, conv_out_channel, kernel_size=3, padding=1, bias=is_final_block)) | |
self.layers = nn.Sequential(*layers) | |
self.gradient_checkpointing = False | |
def forward(self, x: torch.FloatTensor) -> torch.FloatTensor: | |
r"""The forward method of the `DecoderTiny` class.""" | |
# Clamp. | |
x = torch.tanh(x / 3) * 3 | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs) | |
return custom_forward | |
if is_torch_version(">=", "1.11.0"): | |
x = torch.utils.checkpoint.checkpoint(create_custom_forward(self.layers), x, use_reentrant=False) | |
else: | |
x = torch.utils.checkpoint.checkpoint(create_custom_forward(self.layers), x) | |
else: | |
x = self.layers(x) | |
# scale image from [0, 1] to [-1, 1] to match diffusers convention | |
return x.mul(2).sub(1) | |