Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2023 ETH Zurich Computer Vision Lab and The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import math | |
from dataclasses import dataclass | |
from typing import Optional, Tuple, Union | |
import numpy as np | |
import torch | |
from ..configuration_utils import ConfigMixin, register_to_config | |
from ..utils import BaseOutput | |
from ..utils.torch_utils import randn_tensor | |
from .scheduling_utils import SchedulerMixin | |
class RePaintSchedulerOutput(BaseOutput): | |
""" | |
Output class for the scheduler's step function output. | |
Args: | |
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): | |
Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the | |
denoising loop. | |
pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): | |
The predicted denoised sample (x_{0}) based on the model output from | |
the current timestep. `pred_original_sample` can be used to preview progress or for guidance. | |
""" | |
prev_sample: torch.FloatTensor | |
pred_original_sample: torch.FloatTensor | |
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar | |
def betas_for_alpha_bar( | |
num_diffusion_timesteps, | |
max_beta=0.999, | |
alpha_transform_type="cosine", | |
): | |
""" | |
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of | |
(1-beta) over time from t = [0,1]. | |
Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up | |
to that part of the diffusion process. | |
Args: | |
num_diffusion_timesteps (`int`): the number of betas to produce. | |
max_beta (`float`): the maximum beta to use; use values lower than 1 to | |
prevent singularities. | |
alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar. | |
Choose from `cosine` or `exp` | |
Returns: | |
betas (`np.ndarray`): the betas used by the scheduler to step the model outputs | |
""" | |
if alpha_transform_type == "cosine": | |
def alpha_bar_fn(t): | |
return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2 | |
elif alpha_transform_type == "exp": | |
def alpha_bar_fn(t): | |
return math.exp(t * -12.0) | |
else: | |
raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}") | |
betas = [] | |
for i in range(num_diffusion_timesteps): | |
t1 = i / num_diffusion_timesteps | |
t2 = (i + 1) / num_diffusion_timesteps | |
betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta)) | |
return torch.tensor(betas, dtype=torch.float32) | |
class RePaintScheduler(SchedulerMixin, ConfigMixin): | |
""" | |
`RePaintScheduler` is a scheduler for DDPM inpainting inside a given mask. | |
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic | |
methods the library implements for all schedulers such as loading and saving. | |
Args: | |
num_train_timesteps (`int`, defaults to 1000): | |
The number of diffusion steps to train the model. | |
beta_start (`float`, defaults to 0.0001): | |
The starting `beta` value of inference. | |
beta_end (`float`, defaults to 0.02): | |
The final `beta` value. | |
beta_schedule (`str`, defaults to `"linear"`): | |
The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from | |
`linear`, `scaled_linear`, `squaredcos_cap_v2`, or `sigmoid`. | |
eta (`float`): | |
The weight of noise for added noise in diffusion step. If its value is between 0.0 and 1.0 it corresponds | |
to the DDIM scheduler, and if its value is between -0.0 and 1.0 it corresponds to the DDPM scheduler. | |
trained_betas (`np.ndarray`, *optional*): | |
Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`. | |
clip_sample (`bool`, defaults to `True`): | |
Clip the predicted sample between -1 and 1 for numerical stability. | |
""" | |
order = 1 | |
def __init__( | |
self, | |
num_train_timesteps: int = 1000, | |
beta_start: float = 0.0001, | |
beta_end: float = 0.02, | |
beta_schedule: str = "linear", | |
eta: float = 0.0, | |
trained_betas: Optional[np.ndarray] = None, | |
clip_sample: bool = True, | |
): | |
if trained_betas is not None: | |
self.betas = torch.from_numpy(trained_betas) | |
elif beta_schedule == "linear": | |
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) | |
elif beta_schedule == "scaled_linear": | |
# this schedule is very specific to the latent diffusion model. | |
self.betas = ( | |
torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2 | |
) | |
elif beta_schedule == "squaredcos_cap_v2": | |
# Glide cosine schedule | |
self.betas = betas_for_alpha_bar(num_train_timesteps) | |
elif beta_schedule == "sigmoid": | |
# GeoDiff sigmoid schedule | |
betas = torch.linspace(-6, 6, num_train_timesteps) | |
self.betas = torch.sigmoid(betas) * (beta_end - beta_start) + beta_start | |
else: | |
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}") | |
self.alphas = 1.0 - self.betas | |
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) | |
self.one = torch.tensor(1.0) | |
self.final_alpha_cumprod = torch.tensor(1.0) | |
# standard deviation of the initial noise distribution | |
self.init_noise_sigma = 1.0 | |
# setable values | |
self.num_inference_steps = None | |
self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy()) | |
self.eta = eta | |
def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor: | |
""" | |
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the | |
current timestep. | |
Args: | |
sample (`torch.FloatTensor`): | |
The input sample. | |
timestep (`int`, *optional*): | |
The current timestep in the diffusion chain. | |
Returns: | |
`torch.FloatTensor`: | |
A scaled input sample. | |
""" | |
return sample | |
def set_timesteps( | |
self, | |
num_inference_steps: int, | |
jump_length: int = 10, | |
jump_n_sample: int = 10, | |
device: Union[str, torch.device] = None, | |
): | |
""" | |
Sets the discrete timesteps used for the diffusion chain (to be run before inference). | |
Args: | |
num_inference_steps (`int`): | |
The number of diffusion steps used when generating samples with a pre-trained model. If used, | |
`timesteps` must be `None`. | |
jump_length (`int`, defaults to 10): | |
The number of steps taken forward in time before going backward in time for a single jump (“j” in | |
RePaint paper). Take a look at Figure 9 and 10 in the paper. | |
jump_n_sample (`int`, defaults to 10): | |
The number of times to make a forward time jump for a given chosen time sample. Take a look at Figure 9 | |
and 10 in the paper. | |
device (`str` or `torch.device`, *optional*): | |
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | |
""" | |
num_inference_steps = min(self.config.num_train_timesteps, num_inference_steps) | |
self.num_inference_steps = num_inference_steps | |
timesteps = [] | |
jumps = {} | |
for j in range(0, num_inference_steps - jump_length, jump_length): | |
jumps[j] = jump_n_sample - 1 | |
t = num_inference_steps | |
while t >= 1: | |
t = t - 1 | |
timesteps.append(t) | |
if jumps.get(t, 0) > 0: | |
jumps[t] = jumps[t] - 1 | |
for _ in range(jump_length): | |
t = t + 1 | |
timesteps.append(t) | |
timesteps = np.array(timesteps) * (self.config.num_train_timesteps // self.num_inference_steps) | |
self.timesteps = torch.from_numpy(timesteps).to(device) | |
def _get_variance(self, t): | |
prev_timestep = t - self.config.num_train_timesteps // self.num_inference_steps | |
alpha_prod_t = self.alphas_cumprod[t] | |
alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod | |
beta_prod_t = 1 - alpha_prod_t | |
beta_prod_t_prev = 1 - alpha_prod_t_prev | |
# For t > 0, compute predicted variance βt (see formula (6) and (7) from | |
# https://arxiv.org/pdf/2006.11239.pdf) and sample from it to get | |
# previous sample x_{t-1} ~ N(pred_prev_sample, variance) == add | |
# variance to pred_sample | |
# Is equivalent to formula (16) in https://arxiv.org/pdf/2010.02502.pdf | |
# without eta. | |
# variance = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * self.betas[t] | |
variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev) | |
return variance | |
def step( | |
self, | |
model_output: torch.FloatTensor, | |
timestep: int, | |
sample: torch.FloatTensor, | |
original_image: torch.FloatTensor, | |
mask: torch.FloatTensor, | |
generator: Optional[torch.Generator] = None, | |
return_dict: bool = True, | |
) -> Union[RePaintSchedulerOutput, Tuple]: | |
""" | |
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion | |
process from the learned model outputs (most often the predicted noise). | |
Args: | |
model_output (`torch.FloatTensor`): | |
The direct output from learned diffusion model. | |
timestep (`int`): | |
The current discrete timestep in the diffusion chain. | |
sample (`torch.FloatTensor`): | |
A current instance of a sample created by the diffusion process. | |
original_image (`torch.FloatTensor`): | |
The original image to inpaint on. | |
mask (`torch.FloatTensor`): | |
The mask where a value of 0.0 indicates which part of the original image to inpaint. | |
generator (`torch.Generator`, *optional*): | |
A random number generator. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~schedulers.scheduling_repaint.RePaintSchedulerOutput`] or `tuple`. | |
Returns: | |
[`~schedulers.scheduling_repaint.RePaintSchedulerOutput`] or `tuple`: | |
If return_dict is `True`, [`~schedulers.scheduling_repaint.RePaintSchedulerOutput`] is returned, | |
otherwise a tuple is returned where the first element is the sample tensor. | |
""" | |
t = timestep | |
prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps | |
# 1. compute alphas, betas | |
alpha_prod_t = self.alphas_cumprod[t] | |
alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod | |
beta_prod_t = 1 - alpha_prod_t | |
# 2. compute predicted original sample from predicted noise also called | |
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf | |
pred_original_sample = (sample - beta_prod_t**0.5 * model_output) / alpha_prod_t**0.5 | |
# 3. Clip "predicted x_0" | |
if self.config.clip_sample: | |
pred_original_sample = torch.clamp(pred_original_sample, -1, 1) | |
# We choose to follow RePaint Algorithm 1 to get x_{t-1}, however we | |
# substitute formula (7) in the algorithm coming from DDPM paper | |
# (formula (4) Algorithm 2 - Sampling) with formula (12) from DDIM paper. | |
# DDIM schedule gives the same results as DDPM with eta = 1.0 | |
# Noise is being reused in 7. and 8., but no impact on quality has | |
# been observed. | |
# 5. Add noise | |
device = model_output.device | |
noise = randn_tensor(model_output.shape, generator=generator, device=device, dtype=model_output.dtype) | |
std_dev_t = self.eta * self._get_variance(timestep) ** 0.5 | |
variance = 0 | |
if t > 0 and self.eta > 0: | |
variance = std_dev_t * noise | |
# 6. compute "direction pointing to x_t" of formula (12) | |
# from https://arxiv.org/pdf/2010.02502.pdf | |
pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output | |
# 7. compute x_{t-1} of formula (12) from https://arxiv.org/pdf/2010.02502.pdf | |
prev_unknown_part = alpha_prod_t_prev**0.5 * pred_original_sample + pred_sample_direction + variance | |
# 8. Algorithm 1 Line 5 https://arxiv.org/pdf/2201.09865.pdf | |
prev_known_part = (alpha_prod_t_prev**0.5) * original_image + ((1 - alpha_prod_t_prev) ** 0.5) * noise | |
# 9. Algorithm 1 Line 8 https://arxiv.org/pdf/2201.09865.pdf | |
pred_prev_sample = mask * prev_known_part + (1.0 - mask) * prev_unknown_part | |
if not return_dict: | |
return ( | |
pred_prev_sample, | |
pred_original_sample, | |
) | |
return RePaintSchedulerOutput(prev_sample=pred_prev_sample, pred_original_sample=pred_original_sample) | |
def undo_step(self, sample, timestep, generator=None): | |
n = self.config.num_train_timesteps // self.num_inference_steps | |
for i in range(n): | |
beta = self.betas[timestep + i] | |
if sample.device.type == "mps": | |
# randn does not work reproducibly on mps | |
noise = randn_tensor(sample.shape, dtype=sample.dtype, generator=generator) | |
noise = noise.to(sample.device) | |
else: | |
noise = randn_tensor(sample.shape, generator=generator, device=sample.device, dtype=sample.dtype) | |
# 10. Algorithm 1 Line 10 https://arxiv.org/pdf/2201.09865.pdf | |
sample = (1 - beta) ** 0.5 * sample + beta**0.5 * noise | |
return sample | |
def add_noise( | |
self, | |
original_samples: torch.FloatTensor, | |
noise: torch.FloatTensor, | |
timesteps: torch.IntTensor, | |
) -> torch.FloatTensor: | |
raise NotImplementedError("Use `DDPMScheduler.add_noise()` to train for sampling with RePaint.") | |
def __len__(self): | |
return self.config.num_train_timesteps | |