Stable-Makeup-unofficial / diffusers /schedulers /scheduling_vq_diffusion.py
sky24h's picture
init commit
1d24639
# Copyright 2023 Microsoft and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
import torch.nn.functional as F
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .scheduling_utils import SchedulerMixin
@dataclass
class VQDiffusionSchedulerOutput(BaseOutput):
"""
Output class for the scheduler's step function output.
Args:
prev_sample (`torch.LongTensor` of shape `(batch size, num latent pixels)`):
Computed sample x_{t-1} of previous timestep. `prev_sample` should be used as next model input in the
denoising loop.
"""
prev_sample: torch.LongTensor
def index_to_log_onehot(x: torch.LongTensor, num_classes: int) -> torch.FloatTensor:
"""
Convert batch of vector of class indices into batch of log onehot vectors
Args:
x (`torch.LongTensor` of shape `(batch size, vector length)`):
Batch of class indices
num_classes (`int`):
number of classes to be used for the onehot vectors
Returns:
`torch.FloatTensor` of shape `(batch size, num classes, vector length)`:
Log onehot vectors
"""
x_onehot = F.one_hot(x, num_classes)
x_onehot = x_onehot.permute(0, 2, 1)
log_x = torch.log(x_onehot.float().clamp(min=1e-30))
return log_x
def gumbel_noised(logits: torch.FloatTensor, generator: Optional[torch.Generator]) -> torch.FloatTensor:
"""
Apply gumbel noise to `logits`
"""
uniform = torch.rand(logits.shape, device=logits.device, generator=generator)
gumbel_noise = -torch.log(-torch.log(uniform + 1e-30) + 1e-30)
noised = gumbel_noise + logits
return noised
def alpha_schedules(num_diffusion_timesteps: int, alpha_cum_start=0.99999, alpha_cum_end=0.000009):
"""
Cumulative and non-cumulative alpha schedules.
See section 4.1.
"""
att = (
np.arange(0, num_diffusion_timesteps) / (num_diffusion_timesteps - 1) * (alpha_cum_end - alpha_cum_start)
+ alpha_cum_start
)
att = np.concatenate(([1], att))
at = att[1:] / att[:-1]
att = np.concatenate((att[1:], [1]))
return at, att
def gamma_schedules(num_diffusion_timesteps: int, gamma_cum_start=0.000009, gamma_cum_end=0.99999):
"""
Cumulative and non-cumulative gamma schedules.
See section 4.1.
"""
ctt = (
np.arange(0, num_diffusion_timesteps) / (num_diffusion_timesteps - 1) * (gamma_cum_end - gamma_cum_start)
+ gamma_cum_start
)
ctt = np.concatenate(([0], ctt))
one_minus_ctt = 1 - ctt
one_minus_ct = one_minus_ctt[1:] / one_minus_ctt[:-1]
ct = 1 - one_minus_ct
ctt = np.concatenate((ctt[1:], [0]))
return ct, ctt
class VQDiffusionScheduler(SchedulerMixin, ConfigMixin):
"""
A scheduler for vector quantized diffusion.
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
methods the library implements for all schedulers such as loading and saving.
Args:
num_vec_classes (`int`):
The number of classes of the vector embeddings of the latent pixels. Includes the class for the masked
latent pixel.
num_train_timesteps (`int`, defaults to 100):
The number of diffusion steps to train the model.
alpha_cum_start (`float`, defaults to 0.99999):
The starting cumulative alpha value.
alpha_cum_end (`float`, defaults to 0.00009):
The ending cumulative alpha value.
gamma_cum_start (`float`, defaults to 0.00009):
The starting cumulative gamma value.
gamma_cum_end (`float`, defaults to 0.99999):
The ending cumulative gamma value.
"""
order = 1
@register_to_config
def __init__(
self,
num_vec_classes: int,
num_train_timesteps: int = 100,
alpha_cum_start: float = 0.99999,
alpha_cum_end: float = 0.000009,
gamma_cum_start: float = 0.000009,
gamma_cum_end: float = 0.99999,
):
self.num_embed = num_vec_classes
# By convention, the index for the mask class is the last class index
self.mask_class = self.num_embed - 1
at, att = alpha_schedules(num_train_timesteps, alpha_cum_start=alpha_cum_start, alpha_cum_end=alpha_cum_end)
ct, ctt = gamma_schedules(num_train_timesteps, gamma_cum_start=gamma_cum_start, gamma_cum_end=gamma_cum_end)
num_non_mask_classes = self.num_embed - 1
bt = (1 - at - ct) / num_non_mask_classes
btt = (1 - att - ctt) / num_non_mask_classes
at = torch.tensor(at.astype("float64"))
bt = torch.tensor(bt.astype("float64"))
ct = torch.tensor(ct.astype("float64"))
log_at = torch.log(at)
log_bt = torch.log(bt)
log_ct = torch.log(ct)
att = torch.tensor(att.astype("float64"))
btt = torch.tensor(btt.astype("float64"))
ctt = torch.tensor(ctt.astype("float64"))
log_cumprod_at = torch.log(att)
log_cumprod_bt = torch.log(btt)
log_cumprod_ct = torch.log(ctt)
self.log_at = log_at.float()
self.log_bt = log_bt.float()
self.log_ct = log_ct.float()
self.log_cumprod_at = log_cumprod_at.float()
self.log_cumprod_bt = log_cumprod_bt.float()
self.log_cumprod_ct = log_cumprod_ct.float()
# setable values
self.num_inference_steps = None
self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy())
def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
"""
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
Args:
num_inference_steps (`int`):
The number of diffusion steps used when generating samples with a pre-trained model.
device (`str` or `torch.device`, *optional*):
The device to which the timesteps and diffusion process parameters (alpha, beta, gamma) should be moved
to.
"""
self.num_inference_steps = num_inference_steps
timesteps = np.arange(0, self.num_inference_steps)[::-1].copy()
self.timesteps = torch.from_numpy(timesteps).to(device)
self.log_at = self.log_at.to(device)
self.log_bt = self.log_bt.to(device)
self.log_ct = self.log_ct.to(device)
self.log_cumprod_at = self.log_cumprod_at.to(device)
self.log_cumprod_bt = self.log_cumprod_bt.to(device)
self.log_cumprod_ct = self.log_cumprod_ct.to(device)
def step(
self,
model_output: torch.FloatTensor,
timestep: torch.long,
sample: torch.LongTensor,
generator: Optional[torch.Generator] = None,
return_dict: bool = True,
) -> Union[VQDiffusionSchedulerOutput, Tuple]:
"""
Predict the sample from the previous timestep by the reverse transition distribution. See
[`~VQDiffusionScheduler.q_posterior`] for more details about how the distribution is computer.
Args:
log_p_x_0: (`torch.FloatTensor` of shape `(batch size, num classes - 1, num latent pixels)`):
The log probabilities for the predicted classes of the initial latent pixels. Does not include a
prediction for the masked class as the initial unnoised image cannot be masked.
t (`torch.long`):
The timestep that determines which transition matrices are used.
x_t (`torch.LongTensor` of shape `(batch size, num latent pixels)`):
The classes of each latent pixel at time `t`.
generator (`torch.Generator`, or `None`):
A random number generator for the noise applied to `p(x_{t-1} | x_t)` before it is sampled from.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~schedulers.scheduling_vq_diffusion.VQDiffusionSchedulerOutput`] or
`tuple`.
Returns:
[`~schedulers.scheduling_vq_diffusion.VQDiffusionSchedulerOutput`] or `tuple`:
If return_dict is `True`, [`~schedulers.scheduling_vq_diffusion.VQDiffusionSchedulerOutput`] is
returned, otherwise a tuple is returned where the first element is the sample tensor.
"""
if timestep == 0:
log_p_x_t_min_1 = model_output
else:
log_p_x_t_min_1 = self.q_posterior(model_output, sample, timestep)
log_p_x_t_min_1 = gumbel_noised(log_p_x_t_min_1, generator)
x_t_min_1 = log_p_x_t_min_1.argmax(dim=1)
if not return_dict:
return (x_t_min_1,)
return VQDiffusionSchedulerOutput(prev_sample=x_t_min_1)
def q_posterior(self, log_p_x_0, x_t, t):
"""
Calculates the log probabilities for the predicted classes of the image at timestep `t-1`:
```
p(x_{t-1} | x_t) = sum( q(x_t | x_{t-1}) * q(x_{t-1} | x_0) * p(x_0) / q(x_t | x_0) )
```
Args:
log_p_x_0 (`torch.FloatTensor` of shape `(batch size, num classes - 1, num latent pixels)`):
The log probabilities for the predicted classes of the initial latent pixels. Does not include a
prediction for the masked class as the initial unnoised image cannot be masked.
x_t (`torch.LongTensor` of shape `(batch size, num latent pixels)`):
The classes of each latent pixel at time `t`.
t (`torch.Long`):
The timestep that determines which transition matrix is used.
Returns:
`torch.FloatTensor` of shape `(batch size, num classes, num latent pixels)`:
The log probabilities for the predicted classes of the image at timestep `t-1`.
"""
log_onehot_x_t = index_to_log_onehot(x_t, self.num_embed)
log_q_x_t_given_x_0 = self.log_Q_t_transitioning_to_known_class(
t=t, x_t=x_t, log_onehot_x_t=log_onehot_x_t, cumulative=True
)
log_q_t_given_x_t_min_1 = self.log_Q_t_transitioning_to_known_class(
t=t, x_t=x_t, log_onehot_x_t=log_onehot_x_t, cumulative=False
)
# p_0(x_0=C_0 | x_t) / q(x_t | x_0=C_0) ... p_n(x_0=C_0 | x_t) / q(x_t | x_0=C_0)
# . . .
# . . .
# . . .
# p_0(x_0=C_{k-1} | x_t) / q(x_t | x_0=C_{k-1}) ... p_n(x_0=C_{k-1} | x_t) / q(x_t | x_0=C_{k-1})
q = log_p_x_0 - log_q_x_t_given_x_0
# sum_0 = p_0(x_0=C_0 | x_t) / q(x_t | x_0=C_0) + ... + p_0(x_0=C_{k-1} | x_t) / q(x_t | x_0=C_{k-1}), ... ,
# sum_n = p_n(x_0=C_0 | x_t) / q(x_t | x_0=C_0) + ... + p_n(x_0=C_{k-1} | x_t) / q(x_t | x_0=C_{k-1})
q_log_sum_exp = torch.logsumexp(q, dim=1, keepdim=True)
# p_0(x_0=C_0 | x_t) / q(x_t | x_0=C_0) / sum_0 ... p_n(x_0=C_0 | x_t) / q(x_t | x_0=C_0) / sum_n
# . . .
# . . .
# . . .
# p_0(x_0=C_{k-1} | x_t) / q(x_t | x_0=C_{k-1}) / sum_0 ... p_n(x_0=C_{k-1} | x_t) / q(x_t | x_0=C_{k-1}) / sum_n
q = q - q_log_sum_exp
# (p_0(x_0=C_0 | x_t) / q(x_t | x_0=C_0) / sum_0) * a_cumulative_{t-1} + b_cumulative_{t-1} ... (p_n(x_0=C_0 | x_t) / q(x_t | x_0=C_0) / sum_n) * a_cumulative_{t-1} + b_cumulative_{t-1}
# . . .
# . . .
# . . .
# (p_0(x_0=C_{k-1} | x_t) / q(x_t | x_0=C_{k-1}) / sum_0) * a_cumulative_{t-1} + b_cumulative_{t-1} ... (p_n(x_0=C_{k-1} | x_t) / q(x_t | x_0=C_{k-1}) / sum_n) * a_cumulative_{t-1} + b_cumulative_{t-1}
# c_cumulative_{t-1} ... c_cumulative_{t-1}
q = self.apply_cumulative_transitions(q, t - 1)
# ((p_0(x_0=C_0 | x_t) / q(x_t | x_0=C_0) / sum_0) * a_cumulative_{t-1} + b_cumulative_{t-1}) * q(x_t | x_{t-1}=C_0) * sum_0 ... ((p_n(x_0=C_0 | x_t) / q(x_t | x_0=C_0) / sum_n) * a_cumulative_{t-1} + b_cumulative_{t-1}) * q(x_t | x_{t-1}=C_0) * sum_n
# . . .
# . . .
# . . .
# ((p_0(x_0=C_{k-1} | x_t) / q(x_t | x_0=C_{k-1}) / sum_0) * a_cumulative_{t-1} + b_cumulative_{t-1}) * q(x_t | x_{t-1}=C_{k-1}) * sum_0 ... ((p_n(x_0=C_{k-1} | x_t) / q(x_t | x_0=C_{k-1}) / sum_n) * a_cumulative_{t-1} + b_cumulative_{t-1}) * q(x_t | x_{t-1}=C_{k-1}) * sum_n
# c_cumulative_{t-1} * q(x_t | x_{t-1}=C_k) * sum_0 ... c_cumulative_{t-1} * q(x_t | x_{t-1}=C_k) * sum_0
log_p_x_t_min_1 = q + log_q_t_given_x_t_min_1 + q_log_sum_exp
# For each column, there are two possible cases.
#
# Where:
# - sum(p_n(x_0))) is summing over all classes for x_0
# - C_i is the class transitioning from (not to be confused with c_t and c_cumulative_t being used for gamma's)
# - C_j is the class transitioning to
#
# 1. x_t is masked i.e. x_t = c_k
#
# Simplifying the expression, the column vector is:
# .
# .
# .
# (c_t / c_cumulative_t) * (a_cumulative_{t-1} * p_n(x_0 = C_i | x_t) + b_cumulative_{t-1} * sum(p_n(x_0)))
# .
# .
# .
# (c_cumulative_{t-1} / c_cumulative_t) * sum(p_n(x_0))
#
# From equation (11) stated in terms of forward probabilities, the last row is trivially verified.
#
# For the other rows, we can state the equation as ...
#
# (c_t / c_cumulative_t) * [b_cumulative_{t-1} * p(x_0=c_0) + ... + (a_cumulative_{t-1} + b_cumulative_{t-1}) * p(x_0=C_i) + ... + b_cumulative_{k-1} * p(x_0=c_{k-1})]
#
# This verifies the other rows.
#
# 2. x_t is not masked
#
# Simplifying the expression, there are two cases for the rows of the column vector, where C_j = C_i and where C_j != C_i:
# .
# .
# .
# C_j != C_i: b_t * ((b_cumulative_{t-1} / b_cumulative_t) * p_n(x_0 = c_0) + ... + ((a_cumulative_{t-1} + b_cumulative_{t-1}) / b_cumulative_t) * p_n(x_0 = C_i) + ... + (b_cumulative_{t-1} / (a_cumulative_t + b_cumulative_t)) * p_n(c_0=C_j) + ... + (b_cumulative_{t-1} / b_cumulative_t) * p_n(x_0 = c_{k-1}))
# .
# .
# .
# C_j = C_i: (a_t + b_t) * ((b_cumulative_{t-1} / b_cumulative_t) * p_n(x_0 = c_0) + ... + ((a_cumulative_{t-1} + b_cumulative_{t-1}) / (a_cumulative_t + b_cumulative_t)) * p_n(x_0 = C_i = C_j) + ... + (b_cumulative_{t-1} / b_cumulative_t) * p_n(x_0 = c_{k-1}))
# .
# .
# .
# 0
#
# The last row is trivially verified. The other rows can be verified by directly expanding equation (11) stated in terms of forward probabilities.
return log_p_x_t_min_1
def log_Q_t_transitioning_to_known_class(
self, *, t: torch.int, x_t: torch.LongTensor, log_onehot_x_t: torch.FloatTensor, cumulative: bool
):
"""
Calculates the log probabilities of the rows from the (cumulative or non-cumulative) transition matrix for each
latent pixel in `x_t`.
Args:
t (`torch.Long`):
The timestep that determines which transition matrix is used.
x_t (`torch.LongTensor` of shape `(batch size, num latent pixels)`):
The classes of each latent pixel at time `t`.
log_onehot_x_t (`torch.FloatTensor` of shape `(batch size, num classes, num latent pixels)`):
The log one-hot vectors of `x_t`.
cumulative (`bool`):
If cumulative is `False`, the single step transition matrix `t-1`->`t` is used. If cumulative is
`True`, the cumulative transition matrix `0`->`t` is used.
Returns:
`torch.FloatTensor` of shape `(batch size, num classes - 1, num latent pixels)`:
Each _column_ of the returned matrix is a _row_ of log probabilities of the complete probability
transition matrix.
When non cumulative, returns `self.num_classes - 1` rows because the initial latent pixel cannot be
masked.
Where:
- `q_n` is the probability distribution for the forward process of the `n`th latent pixel.
- C_0 is a class of a latent pixel embedding
- C_k is the class of the masked latent pixel
non-cumulative result (omitting logarithms):
```
q_0(x_t | x_{t-1} = C_0) ... q_n(x_t | x_{t-1} = C_0)
. . .
. . .
. . .
q_0(x_t | x_{t-1} = C_k) ... q_n(x_t | x_{t-1} = C_k)
```
cumulative result (omitting logarithms):
```
q_0_cumulative(x_t | x_0 = C_0) ... q_n_cumulative(x_t | x_0 = C_0)
. . .
. . .
. . .
q_0_cumulative(x_t | x_0 = C_{k-1}) ... q_n_cumulative(x_t | x_0 = C_{k-1})
```
"""
if cumulative:
a = self.log_cumprod_at[t]
b = self.log_cumprod_bt[t]
c = self.log_cumprod_ct[t]
else:
a = self.log_at[t]
b = self.log_bt[t]
c = self.log_ct[t]
if not cumulative:
# The values in the onehot vector can also be used as the logprobs for transitioning
# from masked latent pixels. If we are not calculating the cumulative transitions,
# we need to save these vectors to be re-appended to the final matrix so the values
# aren't overwritten.
#
# `P(x_t!=mask|x_{t-1=mask}) = 0` and 0 will be the value of the last row of the onehot vector
# if x_t is not masked
#
# `P(x_t=mask|x_{t-1=mask}) = 1` and 1 will be the value of the last row of the onehot vector
# if x_t is masked
log_onehot_x_t_transitioning_from_masked = log_onehot_x_t[:, -1, :].unsqueeze(1)
# `index_to_log_onehot` will add onehot vectors for masked pixels,
# so the default one hot matrix has one too many rows. See the doc string
# for an explanation of the dimensionality of the returned matrix.
log_onehot_x_t = log_onehot_x_t[:, :-1, :]
# this is a cheeky trick to produce the transition probabilities using log one-hot vectors.
#
# Don't worry about what values this sets in the columns that mark transitions
# to masked latent pixels. They are overwrote later with the `mask_class_mask`.
#
# Looking at the below logspace formula in non-logspace, each value will evaluate to either
# `1 * a + b = a + b` where `log_Q_t` has the one hot value in the column
# or
# `0 * a + b = b` where `log_Q_t` has the 0 values in the column.
#
# See equation 7 for more details.
log_Q_t = (log_onehot_x_t + a).logaddexp(b)
# The whole column of each masked pixel is `c`
mask_class_mask = x_t == self.mask_class
mask_class_mask = mask_class_mask.unsqueeze(1).expand(-1, self.num_embed - 1, -1)
log_Q_t[mask_class_mask] = c
if not cumulative:
log_Q_t = torch.cat((log_Q_t, log_onehot_x_t_transitioning_from_masked), dim=1)
return log_Q_t
def apply_cumulative_transitions(self, q, t):
bsz = q.shape[0]
a = self.log_cumprod_at[t]
b = self.log_cumprod_bt[t]
c = self.log_cumprod_ct[t]
num_latent_pixels = q.shape[2]
c = c.expand(bsz, 1, num_latent_pixels)
q = (q + a).logaddexp(b)
q = torch.cat((q, c), dim=1)
return q