Spaces:
Sleeping
Sleeping
suraj
commited on
Commit
·
ff0a367
1
Parent(s):
48975c6
bugfix
Browse files- .gitattributes +1 -0
- .gitignore +2 -0
- __init__.py +0 -65
- app.py +130 -404
- requirements.txt +1 -1
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
|
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
env/*
|
2 |
+
env/pyvenv.cfg
|
__init__.py
DELETED
@@ -1,65 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
from langchain.document_loaders import (
|
3 |
-
CSVLoader,
|
4 |
-
EverNoteLoader,
|
5 |
-
PDFMinerLoader,
|
6 |
-
TextLoader,
|
7 |
-
UnstructuredEPubLoader,
|
8 |
-
UnstructuredHTMLLoader,
|
9 |
-
UnstructuredMarkdownLoader,
|
10 |
-
UnstructuredODTLoader,
|
11 |
-
UnstructuredPowerPointLoader,
|
12 |
-
UnstructuredWordDocumentLoader,
|
13 |
-
)
|
14 |
-
|
15 |
-
|
16 |
-
FAVICON_PATH: str = 'https://modishcard.com/app/assets/icons/ModishCard_Logo6-02.svg'
|
17 |
-
SYSTEM_PROMPT: str = "You are Saiga, a Englis-speaking automated assistant. You talk to people and help them."
|
18 |
-
SYSTEM_TOKEN: int = 1788
|
19 |
-
USER_TOKEN: int = 1404
|
20 |
-
BOT_TOKEN: int = 9225
|
21 |
-
LINEBREAK_TOKEN: int = 13
|
22 |
-
|
23 |
-
ROLE_TOKENS: dict = {
|
24 |
-
"user": USER_TOKEN,
|
25 |
-
"bot": BOT_TOKEN,
|
26 |
-
"system": SYSTEM_TOKEN
|
27 |
-
}
|
28 |
-
|
29 |
-
LOADER_MAPPING: dict = {
|
30 |
-
".csv": (CSVLoader, {}),
|
31 |
-
".doc": (UnstructuredWordDocumentLoader, {}),
|
32 |
-
".docx": (UnstructuredWordDocumentLoader, {}),
|
33 |
-
".enex": (EverNoteLoader, {}),
|
34 |
-
".epub": (UnstructuredEPubLoader, {}),
|
35 |
-
".html": (UnstructuredHTMLLoader, {}),
|
36 |
-
".md": (UnstructuredMarkdownLoader, {}),
|
37 |
-
".odt": (UnstructuredODTLoader, {}),
|
38 |
-
".pdf": (PDFMinerLoader, {}),
|
39 |
-
".ppt": (UnstructuredPowerPointLoader, {}),
|
40 |
-
".pptx": (UnstructuredPowerPointLoader, {}),
|
41 |
-
".txt": (TextLoader, {"encoding": "utf8"}),
|
42 |
-
}
|
43 |
-
|
44 |
-
|
45 |
-
DICT_REPO_AND_MODELS: dict = {
|
46 |
-
"https://huggingface.co/MaziyarPanahi/Qwen2-1.5B-Instruct-GGUF/resolve/main/Qwen2-1.5B-Instruct.Q8_0.gguf":
|
47 |
-
"MaziyarPanahi/Qwen2-1.5B-Instruct.Q8_0.gguf",
|
48 |
-
}
|
49 |
-
|
50 |
-
EMBEDDER_NAME: str = "sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
|
51 |
-
|
52 |
-
MAX_NEW_TOKENS: int = 1500
|
53 |
-
|
54 |
-
ABS_PATH = os.path.dirname(os.path.abspath(__file__))
|
55 |
-
MODELS_DIR = os.path.join(ABS_PATH, "../models")
|
56 |
-
AUTH_FILE = os.path.join(ABS_PATH, "auth.csv")
|
57 |
-
|
58 |
-
|
59 |
-
BLOCK_CSS = """
|
60 |
-
|
61 |
-
#buttons button {
|
62 |
-
min-width: min(120px,100%);
|
63 |
-
}
|
64 |
-
|
65 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py
CHANGED
@@ -1,412 +1,138 @@
|
|
1 |
-
import tempfile
|
2 |
-
import itertools
|
3 |
import gradio as gr
|
4 |
-
|
5 |
from llama_cpp import Llama
|
6 |
-
|
7 |
-
from
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
"""
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
@staticmethod
|
110 |
-
def process_text(text: str) -> Optional[str]:
|
111 |
-
"""
|
112 |
-
|
113 |
-
:param text:
|
114 |
-
:return:
|
115 |
-
"""
|
116 |
-
lines: list = text.split("\n")
|
117 |
-
lines = [line for line in lines if len(line.strip()) > 2]
|
118 |
-
text = "\n".join(lines).strip()
|
119 |
-
return None if len(text) < 10 else text
|
120 |
-
|
121 |
-
@staticmethod
|
122 |
-
def update_text_db(
|
123 |
-
db: Optional[Chroma],
|
124 |
-
fixed_documents: List[Document],
|
125 |
-
ids: List[str]
|
126 |
-
) -> Union[Optional[Chroma], str]:
|
127 |
-
if db:
|
128 |
-
data: dict = db.get()
|
129 |
-
files_db = {dict_data['source'].split('/')[-1] for dict_data in data["metadatas"]}
|
130 |
-
files_load = {dict_data.metadata["source"].split('/')[-1] for dict_data in fixed_documents}
|
131 |
-
if files_load == files_db:
|
132 |
-
# db.delete([item for item in data['ids'] if item not in ids])
|
133 |
-
# db.update_documents(ids, fixed_documents)
|
134 |
-
|
135 |
-
db.delete(data['ids'])
|
136 |
-
db.add_texts(
|
137 |
-
texts=[doc.page_content for doc in fixed_documents],
|
138 |
-
metadatas=[doc.metadata for doc in fixed_documents],
|
139 |
-
ids=ids
|
140 |
-
)
|
141 |
-
file_warning = f"Uploaded {len(fixed_documents)} fragments! You can ask questions"
|
142 |
-
return db, file_warning
|
143 |
-
|
144 |
-
def build_index(
|
145 |
-
self,
|
146 |
-
file_paths: List[str],
|
147 |
-
db: Optional[Chroma],
|
148 |
-
chunk_size: int,
|
149 |
-
chunk_overlap: int
|
150 |
-
):
|
151 |
-
"""
|
152 |
-
|
153 |
-
:param file_paths:
|
154 |
-
:param db:
|
155 |
-
:param chunk_size:
|
156 |
-
:param chunk_overlap:
|
157 |
-
:return:
|
158 |
-
"""
|
159 |
-
documents: List[Document] = [self.load_single_document(path) for path in file_paths]
|
160 |
-
text_splitter: RecursiveCharacterTextSplitter = RecursiveCharacterTextSplitter(
|
161 |
-
chunk_size=chunk_size, chunk_overlap=chunk_overlap
|
162 |
-
)
|
163 |
-
documents = text_splitter.split_documents(documents)
|
164 |
-
fixed_documents: List[Document] = []
|
165 |
-
for doc in documents:
|
166 |
-
doc.page_content = self.process_text(doc.page_content)
|
167 |
-
if not doc.page_content:
|
168 |
-
continue
|
169 |
-
fixed_documents.append(doc)
|
170 |
-
|
171 |
-
ids: List[str] = [
|
172 |
-
f"{path.split('/')[-1].replace('.txt', '')}{i}"
|
173 |
-
for path, i in itertools.product(file_paths, range(1, len(fixed_documents) + 1))
|
174 |
-
]
|
175 |
-
|
176 |
-
self.update_text_db(db, fixed_documents, ids)
|
177 |
-
|
178 |
-
db = Chroma.from_documents(
|
179 |
-
documents=fixed_documents,
|
180 |
-
embedding=self.embeddings,
|
181 |
-
ids=ids,
|
182 |
-
client_settings=Settings(
|
183 |
-
anonymized_telemetry=False,
|
184 |
-
persist_directory="db"
|
185 |
-
)
|
186 |
-
)
|
187 |
-
file_warning = f"Uploaded {len(fixed_documents)} fragments! You can ask questions."
|
188 |
-
return db, file_warning
|
189 |
-
|
190 |
-
@staticmethod
|
191 |
-
def user(message, history):
|
192 |
-
new_history = history + [[message, None]]
|
193 |
-
return "", new_history
|
194 |
-
|
195 |
-
@staticmethod
|
196 |
-
def regenerate_response(history):
|
197 |
-
"""
|
198 |
-
|
199 |
-
:param history:
|
200 |
-
:return:
|
201 |
-
"""
|
202 |
-
return "", history
|
203 |
-
|
204 |
-
@staticmethod
|
205 |
-
def retrieve(history, db: Optional[Chroma], retrieved_docs):
|
206 |
-
"""
|
207 |
-
|
208 |
-
:param history:
|
209 |
-
:param db:
|
210 |
-
:param retrieved_docs:
|
211 |
-
:return:
|
212 |
-
"""
|
213 |
-
if db:
|
214 |
-
last_user_message = history[-1][0]
|
215 |
-
try:
|
216 |
-
docs = db.similarity_search(last_user_message, k=4)
|
217 |
-
# retriever = db.as_retriever(search_kwargs={"k": k_documents})
|
218 |
-
# docs = retriever.get_relevant_documents(last_user_message)
|
219 |
-
except RuntimeError:
|
220 |
-
docs = db.similarity_search(last_user_message, k=1)
|
221 |
-
# retriever = db.as_retriever(search_kwargs={"k": 1})
|
222 |
-
# docs = retriever.get_relevant_documents(last_user_message)
|
223 |
-
source_docs = set()
|
224 |
-
for doc in docs:
|
225 |
-
for content in doc.metadata.values():
|
226 |
-
source_docs.add(content.split("/")[-1])
|
227 |
-
retrieved_docs = "\n\n".join([doc.page_content for doc in docs])
|
228 |
-
retrieved_docs = f"A document- {''.join(list(source_docs))}.\n\n{retrieved_docs}"
|
229 |
-
return retrieved_docs
|
230 |
-
|
231 |
-
def bot(self, history, retrieved_docs):
|
232 |
-
"""
|
233 |
-
|
234 |
-
:param history:
|
235 |
-
:param retrieved_docs:
|
236 |
-
:return:
|
237 |
-
"""
|
238 |
-
if not history:
|
239 |
-
return
|
240 |
-
tokens = self.get_system_tokens(self.llama_model)[:]
|
241 |
-
tokens.append(LINEBREAK_TOKEN)
|
242 |
-
|
243 |
-
for user_message, bot_message in history[:-1]:
|
244 |
-
message_tokens = self.get_message_tokens(model=self.llama_model, role="user", content=user_message)
|
245 |
-
tokens.extend(message_tokens)
|
246 |
-
|
247 |
-
last_user_message = history[-1][0]
|
248 |
-
if retrieved_docs:
|
249 |
-
last_user_message = f"Context: {retrieved_docs}\n\nUsing context, answer the question:" \
|
250 |
-
f"{last_user_message}"
|
251 |
-
message_tokens = self.get_message_tokens(model=self.llama_model, role="user", content=last_user_message)
|
252 |
-
tokens.extend(message_tokens)
|
253 |
-
|
254 |
-
role_tokens = [self.llama_model.token_bos(), BOT_TOKEN, LINEBREAK_TOKEN]
|
255 |
-
tokens.extend(role_tokens)
|
256 |
-
generator = self.llama_model.generate(
|
257 |
-
tokens,
|
258 |
-
top_k=30,
|
259 |
-
top_p=0.9,
|
260 |
-
temp=0.1
|
261 |
-
)
|
262 |
-
|
263 |
-
partial_text = ""
|
264 |
-
for i, token in enumerate(generator):
|
265 |
-
if token == self.llama_model.token_eos() or (MAX_NEW_TOKENS is not None and i >= MAX_NEW_TOKENS):
|
266 |
-
break
|
267 |
-
partial_text += self.llama_model.detokenize([token]).decode("utf-8", "ignore")
|
268 |
-
history[-1][1] = partial_text
|
269 |
-
yield history
|
270 |
-
|
271 |
-
def run(self):
|
272 |
-
"""
|
273 |
-
|
274 |
-
:return:
|
275 |
-
"""
|
276 |
-
with gr.Blocks(theme=gr.themes.Soft(), css=BLOCK_CSS) as demo:
|
277 |
-
db: Optional[Chroma] = gr.State(None)
|
278 |
-
favicon = f'<img src="{FAVICON_PATH}" width="48px" style="display: inline">'
|
279 |
gr.Markdown(
|
280 |
-
|
281 |
-
)
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
)
|
302 |
-
|
303 |
-
with gr.Row():
|
304 |
-
with gr.Column(scale=20):
|
305 |
-
msg = gr.Textbox(
|
306 |
-
label="send a message",
|
307 |
-
show_label=False,
|
308 |
-
placeholder="send a message",
|
309 |
-
container=False
|
310 |
-
)
|
311 |
-
with gr.Column(scale=3, min_width=100):
|
312 |
-
submit = gr.Button("📤 Send", variant="primary")
|
313 |
-
|
314 |
-
with gr.Row():
|
315 |
-
# gr.Button(value="👍 Понравилось")
|
316 |
-
# gr.Button(value="👎 Не понравилось")
|
317 |
-
stop = gr.Button(value="⛔ Stop")
|
318 |
-
regenerate = gr.Button(value="🔄 Repeat")
|
319 |
-
clear = gr.Button(value="🗑️ Clear")
|
320 |
-
|
321 |
-
# # Upload files
|
322 |
-
# file_output.upload(
|
323 |
-
# fn=self.upload_files,
|
324 |
-
# inputs=[file_output],
|
325 |
-
# outputs=[file_paths],
|
326 |
-
# queue=True,
|
327 |
-
# ).success(
|
328 |
-
# fn=self.build_index,
|
329 |
-
# inputs=[file_paths, db, chunk_size, chunk_overlap],
|
330 |
-
# outputs=[db, file_warning],
|
331 |
-
# queue=True
|
332 |
-
# )
|
333 |
-
|
334 |
-
model_selector.change(
|
335 |
-
fn=self.load_model,
|
336 |
-
inputs=[model_selector],
|
337 |
-
outputs=[model_selector]
|
338 |
-
)
|
339 |
-
|
340 |
-
# Pressing Enter
|
341 |
-
submit_event = msg.submit(
|
342 |
-
fn=self.user,
|
343 |
-
inputs=[msg, chatbot],
|
344 |
-
outputs=[msg, chatbot],
|
345 |
-
queue=False,
|
346 |
-
).success(
|
347 |
-
fn=self.retrieve,
|
348 |
-
inputs=[chatbot, db, retrieved_docs],
|
349 |
-
outputs=[retrieved_docs],
|
350 |
-
queue=True,
|
351 |
-
).success(
|
352 |
-
fn=self.bot,
|
353 |
-
inputs=[chatbot, retrieved_docs],
|
354 |
-
outputs=chatbot,
|
355 |
-
queue=True,
|
356 |
-
)
|
357 |
-
|
358 |
-
# Pressing the button
|
359 |
-
submit_click_event = submit.click(
|
360 |
-
fn=self.user,
|
361 |
-
inputs=[msg, chatbot],
|
362 |
-
outputs=[msg, chatbot],
|
363 |
-
queue=False,
|
364 |
-
).success(
|
365 |
-
fn=self.retrieve,
|
366 |
-
inputs=[chatbot, db, retrieved_docs],
|
367 |
-
outputs=[retrieved_docs],
|
368 |
-
queue=True,
|
369 |
-
).success(
|
370 |
-
fn=self.bot,
|
371 |
-
inputs=[chatbot, retrieved_docs],
|
372 |
-
outputs=chatbot,
|
373 |
-
queue=True,
|
374 |
-
)
|
375 |
-
|
376 |
-
# Stop generation
|
377 |
-
stop.click(
|
378 |
-
fn=None,
|
379 |
-
inputs=None,
|
380 |
-
outputs=None,
|
381 |
-
cancels=[submit_event, submit_click_event],
|
382 |
-
queue=False,
|
383 |
-
)
|
384 |
-
|
385 |
-
# Regenerate
|
386 |
-
regenerate.click(
|
387 |
-
fn=self.regenerate_response,
|
388 |
-
inputs=[chatbot],
|
389 |
-
outputs=[msg, chatbot],
|
390 |
-
queue=False,
|
391 |
-
).success(
|
392 |
-
fn=self.retrieve,
|
393 |
-
inputs=[chatbot, db, retrieved_docs],
|
394 |
-
outputs=[retrieved_docs],
|
395 |
-
queue=True,
|
396 |
-
).success(
|
397 |
-
fn=self.bot,
|
398 |
-
inputs=[chatbot, retrieved_docs],
|
399 |
-
outputs=chatbot,
|
400 |
-
queue=True,
|
401 |
-
)
|
402 |
|
403 |
-
# Clear history
|
404 |
-
clear.click(lambda: None, None, chatbot, queue=False)
|
405 |
|
406 |
-
|
407 |
-
|
|
|
|
|
|
|
408 |
|
409 |
|
410 |
if __name__ == "__main__":
|
411 |
-
|
412 |
-
local_chat_gpt.run()
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import os
|
3 |
from llama_cpp import Llama
|
4 |
+
import datetime
|
5 |
+
from huggingface_hub import hf_hub_download
|
6 |
+
|
7 |
+
#MODEL SETTINGS also for DISPLAY
|
8 |
+
convHistory = ''
|
9 |
+
modelfile = hf_hub_download(
|
10 |
+
repo_id=os.environ.get("REPO_ID", "slasiyal/deepseek-coder-1.3b-instruct.gguf"),
|
11 |
+
filename=os.environ.get("MODEL_FILE", "deepseek-coder-1.3b-instruct.gguf"),
|
12 |
+
)
|
13 |
+
repetitionpenalty = 1.15
|
14 |
+
contextlength=4096
|
15 |
+
logfile = 'logs.txt'
|
16 |
+
print("loading model...")
|
17 |
+
stt = datetime.datetime.now()
|
18 |
+
# Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
|
19 |
+
llm = Llama(
|
20 |
+
model_path=modelfile, # Download the model file first
|
21 |
+
n_ctx=contextlength, # The max sequence length to use - note that longer sequence lengths require much more resources
|
22 |
+
#n_threads=2, # The number of CPU threads to use, tailor to your system and the resulting performance
|
23 |
+
)
|
24 |
+
dt = datetime.datetime.now() - stt
|
25 |
+
print(f"Model loaded in {dt}")
|
26 |
+
|
27 |
+
def writehistory(text):
|
28 |
+
with open(logfile, 'a') as f:
|
29 |
+
f.write(text)
|
30 |
+
f.write('\n')
|
31 |
+
f.close()
|
32 |
+
|
33 |
+
"""
|
34 |
+
gr.themes.Base()
|
35 |
+
gr.themes.Default()
|
36 |
+
gr.themes.Glass()
|
37 |
+
gr.themes.Monochrome()
|
38 |
+
gr.themes.Soft()
|
39 |
+
"""
|
40 |
+
def combine(a, b, c, d,e,f):
|
41 |
+
global convHistory
|
42 |
+
import datetime
|
43 |
+
SYSTEM_PROMPT = f"""{a}
|
44 |
+
|
45 |
+
|
46 |
+
"""
|
47 |
+
temperature = c
|
48 |
+
max_new_tokens = d
|
49 |
+
repeat_penalty = f
|
50 |
+
top_p = e
|
51 |
+
prompt = f"<|user|>\n{b}<|endoftext|>\n<|assistant|>"
|
52 |
+
start = datetime.datetime.now()
|
53 |
+
generation = ""
|
54 |
+
delta = ""
|
55 |
+
prompt_tokens = f"Prompt Tokens: {len(llm.tokenize(bytes(prompt,encoding='utf-8')))}"
|
56 |
+
generated_text = ""
|
57 |
+
answer_tokens = ''
|
58 |
+
total_tokens = ''
|
59 |
+
for character in llm(prompt,
|
60 |
+
max_tokens=max_new_tokens,
|
61 |
+
stop=["</s>"],
|
62 |
+
temperature = temperature,
|
63 |
+
repeat_penalty = repeat_penalty,
|
64 |
+
top_p = top_p, # Example stop token - not necessarily correct for this specific model! Please check before using.
|
65 |
+
echo=False,
|
66 |
+
stream=True):
|
67 |
+
generation += character["choices"][0]["text"]
|
68 |
+
|
69 |
+
answer_tokens = f"Out Tkns: {len(llm.tokenize(bytes(generation,encoding='utf-8')))}"
|
70 |
+
total_tokens = f"Total Tkns: {len(llm.tokenize(bytes(prompt,encoding='utf-8'))) + len(llm.tokenize(bytes(generation,encoding='utf-8')))}"
|
71 |
+
delta = datetime.datetime.now() - start
|
72 |
+
yield generation, delta, prompt_tokens, answer_tokens, total_tokens
|
73 |
+
timestamp = datetime.datetime.now()
|
74 |
+
logger = f"""time: {timestamp}\n Temp: {temperature} - MaxNewTokens: {max_new_tokens} - RepPenalty: 1.5 \nPROMPT: \n{prompt}\nStableZephyr3B: {generation}\nGenerated in {delta}\nPromptTokens: {prompt_tokens} Output Tokens: {answer_tokens} Total Tokens: {total_tokens}\n\n---\n\n"""
|
75 |
+
writehistory(logger)
|
76 |
+
convHistory = convHistory + prompt + "\n" + generation + "\n"
|
77 |
+
print(convHistory)
|
78 |
+
return generation, delta, prompt_tokens, answer_tokens, total_tokens
|
79 |
+
#return generation, delta
|
80 |
+
|
81 |
+
|
82 |
+
# MAIN GRADIO INTERFACE
|
83 |
+
with gr.Blocks(theme='Medguy/base2') as demo: #theme=gr.themes.Glass() #theme='remilia/Ghostly'
|
84 |
+
#TITLE SECTION
|
85 |
+
with gr.Row(variant='compact'):
|
86 |
+
with gr.Column(scale=12):
|
87 |
+
gr.HTML("<center>"
|
88 |
+
+ "<h3>Prompt Engineering Playground!</h3>"
|
89 |
+
+ "<h1>🐦 StableLM-Zephyr-3B - 4K context window</h2></center>")
|
90 |
+
gr.Image(value='https://github.com/fabiomatricardi/GradioStudies/raw/main/20231205/logo-banner-StableZephyr.jpg', height=95, show_label = False,
|
91 |
+
show_download_button = False, container = False)
|
92 |
+
# INTERACTIVE INFOGRAPHIC SECTION
|
93 |
+
with gr.Row():
|
94 |
+
with gr.Column(min_width=80):
|
95 |
+
gentime = gr.Textbox(value="", placeholder="Generation Time:", min_width=50, show_label=False)
|
96 |
+
with gr.Column(min_width=80):
|
97 |
+
prompttokens = gr.Textbox(value="", placeholder="Prompt Tkn:", min_width=50, show_label=False)
|
98 |
+
with gr.Column(min_width=80):
|
99 |
+
outputokens = gr.Textbox(value="", placeholder="Output Tkn:", min_width=50, show_label=False)
|
100 |
+
with gr.Column(min_width=80):
|
101 |
+
totaltokens = gr.Textbox(value="", placeholder="Total Tokens:", min_width=50, show_label=False)
|
102 |
+
|
103 |
+
# PLAYGROUND INTERFACE SECTION
|
104 |
+
with gr.Row():
|
105 |
+
with gr.Column(scale=1):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
gr.Markdown(
|
107 |
+
f"""
|
108 |
+
### Tunning Parameters""")
|
109 |
+
temp = gr.Slider(label="Temperature",minimum=0.0, maximum=1.0, step=0.01, value=0.42)
|
110 |
+
top_p = gr.Slider(label="Top_P",minimum=0.0, maximum=1.0, step=0.01, value=0.8)
|
111 |
+
repPen = gr.Slider(label="Repetition Penalty",minimum=0.0, maximum=4.0, step=0.01, value=1.2)
|
112 |
+
max_len = gr.Slider(label="Maximum output lenght", minimum=10,maximum=(contextlength-500),step=2, value=900)
|
113 |
+
gr.Markdown(
|
114 |
+
"""
|
115 |
+
Fill the System Prompt and User Prompt
|
116 |
+
And then click the Button below
|
117 |
+
""")
|
118 |
+
btn = gr.Button(value="🐦 Generate", variant='primary')
|
119 |
+
gr.Markdown(
|
120 |
+
f"""
|
121 |
+
- **Prompt Template**: OpenChat 🐦
|
122 |
+
- **Repetition Penalty**: {repetitionpenalty}
|
123 |
+
- **Context Lenght**: {contextlength} tokens
|
124 |
+
- **LLM Engine**: CTransformers
|
125 |
+
- **Model**: 🐦 StarlingLM-7b
|
126 |
+
- **Log File**: {logfile}
|
127 |
+
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
|
|
|
|
|
129 |
|
130 |
+
with gr.Column(scale=4):
|
131 |
+
txt = gr.Textbox(label="System Prompt", value = "", placeholder = "This models does not have any System prompt...",lines=1, interactive = False)
|
132 |
+
txt_2 = gr.Textbox(label="User Prompt", lines=6)
|
133 |
+
txt_3 = gr.Textbox(value="", label="Output", lines = 13, show_copy_button=True)
|
134 |
+
btn.click(combine, inputs=[txt, txt_2,temp,max_len,top_p,repPen], outputs=[txt_3,gentime,prompttokens,outputokens,totaltokens])
|
135 |
|
136 |
|
137 |
if __name__ == "__main__":
|
138 |
+
demo.launch(inbrowser=True)
|
|
requirements.txt
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
llama-cpp-python
|
2 |
langchain==0.0.331
|
3 |
huggingface-hub==0.17.3
|
4 |
chromadb==0.4.18
|
|
|
1 |
+
llama-cpp-python
|
2 |
langchain==0.0.331
|
3 |
huggingface-hub==0.17.3
|
4 |
chromadb==0.4.18
|