File size: 5,805 Bytes
f44876d
 
 
 
 
 
 
 
 
 
193923d
f44876d
193923d
 
 
 
 
 
 
 
 
 
 
 
f44876d
 
193923d
f44876d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
928013e
f44876d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import re
import sys
import typing as tp
import unicodedata

import torch
from sacremoses import MosesPunctNormalizer
from sentence_splitter import SentenceSplitter
from transformers import AutoModelForSeq2SeqLM, NllbTokenizer

MODEL_URL = "slone/nllb-210-v1"
LANGUAGES = {
    "Русский | Russian": "rus_Cyrl",
    "English | Английский": "eng_Latn",
    "Azərbaycan | Azerbaijani  | Азербайджанский": "azj_Latn",
    "Башҡорт | Bashkir | Башкирский": "bak_Cyrl",
    "Буряад | Buryat | Бурятский": "bxr_Cyrl",
    "Чӑваш | Chuvash | Чувашский": "chv_Cyrl",
    "Хакас | Khakas | Хакасский": "kjh_Cyrl",
    "Къарачай-малкъар | Karachay-Balkar | Карачаево-балкарский": "krc_Cyrl",
    "Марий | Meadow Mari | Марийский": "mhr_Cyrl",
    "Эрзянь | Erzya | Эрзянский": "myv_Cyrl",
    "Татар | Tatar | Татарский": "tat_Cyrl",
    "Тыва | Тувинский | Tuvan ": "tyv_Cyrl",
}
L1 = "rus_Cyrl"
L2 = "eng_Latn"


def get_non_printing_char_replacer(replace_by: str = " ") -> tp.Callable[[str], str]:
    non_printable_map = {
        ord(c): replace_by
        for c in (chr(i) for i in range(sys.maxunicode + 1))
        # same as \p{C} in perl
        # see https://www.unicode.org/reports/tr44/#General_Category_Values
        if unicodedata.category(c) in {"C", "Cc", "Cf", "Cs", "Co", "Cn"}
    }

    def replace_non_printing_char(line) -> str:
        return line.translate(non_printable_map)

    return replace_non_printing_char


class TextPreprocessor:
    """
    Mimic the text preprocessing made for the NLLB model.
    This code is adapted from the Stopes repo of the NLLB team:
    https://github.com/facebookresearch/stopes/blob/main/stopes/pipelines/monolingual/monolingual_line_processor.py#L214
    """

    def __init__(self, lang="en"):
        self.mpn = MosesPunctNormalizer(lang=lang)
        self.mpn.substitutions = [
            (re.compile(r), sub) for r, sub in self.mpn.substitutions
        ]
        self.replace_nonprint = get_non_printing_char_replacer(" ")

    def __call__(self, text: str) -> str:
        clean = self.mpn.normalize(text)
        clean = self.replace_nonprint(clean)
        # replace 𝓕𝔯𝔞𝔫𝔠𝔢𝔰𝔠𝔞 by Francesca
        clean = unicodedata.normalize("NFKC", clean)
        return clean


def sentenize_with_fillers(text, splitter, fix_double_space=True, ignore_errors=False):
    """Apply a sentence splitter and return the sentences and all separators before and after them"""
    if fix_double_space:
        text = re.sub(" +", " ", text)
    sentences = splitter.split(text)
    fillers = []
    i = 0
    for sentence in sentences:
        start_idx = text.find(sentence, i)
        if ignore_errors and start_idx == -1:
            # print(f"sent not found after {i}: `{sentence}`")
            start_idx = i + 1
        assert start_idx != -1, f"sent not found after {i}: `{sentence}`"
        fillers.append(text[i:start_idx])
        i = start_idx + len(sentence)
    fillers.append(text[i:])
    return sentences, fillers


class Translator:
    def __init__(self):
        self.model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_URL, low_cpu_mem_usage=True)
        if torch.cuda.is_available():
            self.model.cuda()
        self.tokenizer = NllbTokenizer.from_pretrained(MODEL_URL)

        self.splitter = SentenceSplitter("ru")
        self.preprocessor = TextPreprocessor()

        self.languages = LANGUAGES

    def translate(
        self,
        text,
        src_lang=L1,
        tgt_lang=L2,
        max_length="auto",
        num_beams=4,
        by_sentence=True,
        preprocess=True,
        **kwargs,
    ):
        """Translate a text sentence by sentence, preserving the fillers around the sentences."""
        if by_sentence:
            sents, fillers = sentenize_with_fillers(
                text, splitter=self.splitter, ignore_errors=True
            )
        else:
            sents = [text]
            fillers = ["", ""]
        if preprocess:
            sents = [self.preprocessor(sent) for sent in sents]
        results = []
        for sent, sep in zip(sents, fillers):
            results.append(sep)
            results.append(
                self.translate_single(
                    sent,
                    src_lang=src_lang,
                    tgt_lang=tgt_lang,
                    max_length=max_length,
                    num_beams=num_beams,
                    **kwargs,
                )
            )
        results.append(fillers[-1])
        return "".join(results)

    def translate_single(
        self,
        text,
        src_lang=L1,
        tgt_lang=L2,
        max_length="auto",
        num_beams=4,
        n_out=None,
        **kwargs,
    ):
        self.tokenizer.src_lang = src_lang
        encoded = self.tokenizer(
            text, return_tensors="pt", truncation=True, max_length=512
        )
        if max_length == "auto":
            max_length = int(32 + 2.0 * encoded.input_ids.shape[1])
        generated_tokens = self.model.generate(
            **encoded.to(self.model.device),
            forced_bos_token_id=self.tokenizer.lang_code_to_id[tgt_lang],
            max_length=max_length,
            num_beams=num_beams,
            num_return_sequences=n_out or 1,
            **kwargs,
        )
        out = self.tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
        if isinstance(text, str) and n_out is None:
            return out[0]
        return out


if __name__ == "__main__":
    print("Initializing a translator to pre-download models...")
    translator = Translator()
    print("Initialization successful!")