File size: 9,205 Bytes
560b597
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
"""
Author: Luigi Piccinelli
Licensed under the CC-BY NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/)
"""

from math import pi
from typing import Optional

import torch
import torch.nn as nn
from einops import rearrange, repeat


class PositionEmbeddingSine(nn.Module):
    def __init__(
        self, num_pos_feats=64, temperature=10000, normalize=False, scale=None
    ):
        super().__init__()
        self.num_pos_feats = num_pos_feats
        self.temperature = temperature
        self.normalize = normalize
        if scale is not None and normalize is False:
            raise ValueError("normalize should be True if scale is passed")
        if scale is None:
            scale = 2 * pi
        self.scale = scale

    def forward(
        self, x: torch.Tensor, mask: Optional[torch.Tensor] = None
    ) -> torch.Tensor:
        if mask is None:
            mask = torch.zeros(
                (x.size(0), x.size(2), x.size(3)), device=x.device, dtype=torch.bool
            )
        not_mask = ~mask
        y_embed = not_mask.cumsum(1, dtype=torch.float32)
        x_embed = not_mask.cumsum(2, dtype=torch.float32)
        if self.normalize:
            eps = 1e-6
            y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
            x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale

        dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
        dim_t = self.temperature ** (
            2 * torch.div(dim_t, 2, rounding_mode="floor") / self.num_pos_feats
        )

        pos_x = x_embed[:, :, :, None] / dim_t
        pos_y = y_embed[:, :, :, None] / dim_t
        pos_x = torch.stack(
            (pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4
        ).flatten(3)
        pos_y = torch.stack(
            (pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4
        ).flatten(3)
        pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
        return pos

    def __repr__(self, _repr_indent=4):
        head = "Positional encoding " + self.__class__.__name__
        body = [
            "num_pos_feats: {}".format(self.num_pos_feats),
            "temperature: {}".format(self.temperature),
            "normalize: {}".format(self.normalize),
            "scale: {}".format(self.scale),
        ]
        # _repr_indent = 4
        lines = [head] + [" " * _repr_indent + line for line in body]
        return "\n".join(lines)


class LearnedSinusoidalPosEmb(nn.Module):
    def __init__(self, dim):
        super().__init__()
        assert (dim % 2) == 0
        half_dim = dim // 2
        self.weights = nn.Parameter(torch.randn(half_dim))

    def forward(self, x):
        x = rearrange(x, "b -> b 1")
        freqs = x * rearrange(self.weights, "d -> 1 d") * 2 * pi
        fouriered = torch.cat((freqs.sin(), freqs.cos()), dim=-1)
        fouriered = torch.cat((x, fouriered), dim=-1)
        return fouriered


def broadcat(tensors, dim=-1):
    num_tensors = len(tensors)
    shape_lens = set(list(map(lambda t: len(t.shape), tensors)))
    assert len(shape_lens) == 1, "tensors must all have the same number of dimensions"
    shape_len = list(shape_lens)[0]
    dim = (dim + shape_len) if dim < 0 else dim
    dims = list(zip(*map(lambda t: list(t.shape), tensors)))
    expandable_dims = [(i, val) for i, val in enumerate(dims) if i != dim]
    assert all(
        [*map(lambda t: len(set(t[1])) <= 2, expandable_dims)]
    ), "invalid dimensions for broadcastable concatentation"
    max_dims = list(map(lambda t: (t[0], max(t[1])), expandable_dims))
    expanded_dims = list(map(lambda t: (t[0], (t[1],) * num_tensors), max_dims))
    expanded_dims.insert(dim, (dim, dims[dim]))
    expandable_shapes = list(zip(*map(lambda t: t[1], expanded_dims)))
    tensors = list(map(lambda t: t[0].expand(*t[1]), zip(tensors, expandable_shapes)))
    return torch.cat(tensors, dim=dim)


def rotate_half(x):
    x = rearrange(x, "... (d r) -> ... d r", r=2)
    x1, x2 = x.unbind(dim=-1)
    x = torch.stack((-x2, x1), dim=-1)
    return rearrange(x, "... d r -> ... (d r)")


class VisionRotaryEmbedding(nn.Module):
    def __init__(
        self,
        dim,
        pt_seq_len,
        ft_seq_len=None,
        custom_freqs=None,
        freqs_for="lang",
        theta=10000,
        max_freq=10,
        num_freqs=1,
    ):
        super().__init__()
        if custom_freqs:
            freqs = custom_freqs
        elif freqs_for == "lang":
            freqs = 1.0 / (
                theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)
            )
        elif freqs_for == "pixel":
            freqs = torch.linspace(1.0, max_freq / 2, dim // 2) * pi
        elif freqs_for == "constant":
            freqs = torch.ones(num_freqs).float()
        else:
            raise ValueError(f"unknown modality {freqs_for}")

        if ft_seq_len is None:
            ft_seq_len = pt_seq_len
        t = torch.arange(ft_seq_len) / ft_seq_len * pt_seq_len

        freqs_h = torch.einsum("..., f -> ... f", t, freqs)
        freqs_h = repeat(freqs_h, "... n -> ... (n r)", r=2)

        freqs_w = torch.einsum("..., f -> ... f", t, freqs)
        freqs_w = repeat(freqs_w, "... n -> ... (n r)", r=2)

        freqs = broadcat((freqs_h[:, None, :], freqs_w[None, :, :]), dim=-1)

        self.register_buffer("freqs_cos", freqs.cos())
        self.register_buffer("freqs_sin", freqs.sin())

        print("======== shape of rope freq", self.freqs_cos.shape, "========")

    def forward(self, t, start_index=0):
        rot_dim = self.freqs_cos.shape[-1]
        end_index = start_index + rot_dim
        assert (
            rot_dim <= t.shape[-1]
        ), f"feature dimension {t.shape[-1]} is not of sufficient size to rotate in all the positions {rot_dim}"
        t_left, t, t_right = (
            t[..., :start_index],
            t[..., start_index:end_index],
            t[..., end_index:],
        )
        t = (t * self.freqs_cos) + (rotate_half(t) * self.freqs_sin)
        return torch.cat((t_left, t, t_right), dim=-1)


class VisionRotaryEmbeddingFast(nn.Module):
    def __init__(
        self,
        dim,
        pt_seq_len,
        ft_seq_len=None,
        custom_freqs=None,
        freqs_for="lang",
        theta=10000,
        max_freq=10,
        num_freqs=1,
    ):
        super().__init__()
        if custom_freqs:
            freqs = custom_freqs
        elif freqs_for == "lang":
            freqs = 1.0 / (
                theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)
            )
        elif freqs_for == "pixel":
            freqs = torch.linspace(1.0, max_freq / 2, dim // 2) * pi
        elif freqs_for == "constant":
            freqs = torch.ones(num_freqs).float()
        else:
            raise ValueError(f"unknown modality {freqs_for}")

        if ft_seq_len is None:
            ft_seq_len = pt_seq_len
        t = torch.arange(ft_seq_len) / ft_seq_len * pt_seq_len

        freqs = torch.einsum("..., f -> ... f", t, freqs)
        freqs = repeat(freqs, "... n -> ... (n r)", r=2)
        freqs = broadcat((freqs[:, None, :], freqs[None, :, :]), dim=-1)

        freqs_cos = freqs.cos().view(-1, freqs.shape[-1])
        freqs_sin = freqs.sin().view(-1, freqs.shape[-1])

        self.register_buffer("freqs_cos", freqs_cos)
        self.register_buffer("freqs_sin", freqs_sin)

    def forward(self, t):
        return t * self.freqs_cos + rotate_half(t) * self.freqs_sin


from math import log2


def generate_fourier_features(
    x: torch.Tensor,
    dim: int = 512,
    max_freq: int = 64,
    use_cos: bool = False,
    use_log: bool = False,
    cat_orig: bool = False,
):
    x_orig = x
    device, dtype, input_dim = x.device, x.dtype, x.shape[-1]
    num_bands = dim // (2 * input_dim) if use_cos else dim // input_dim

    if use_log:
        scales = 2.0 ** torch.linspace(
            0.0, log2(max_freq), steps=num_bands, device=device, dtype=dtype
        )
    else:
        scales = torch.linspace(
            1.0, max_freq / 2, num_bands, device=device, dtype=dtype
        )

    x = x.unsqueeze(-1)
    scales = scales[(*((None,) * (len(x.shape) - 1)), Ellipsis)]

    x = x * scales * pi
    x = torch.cat(
        (
            [x.sin(), x.cos()]
            if use_cos
            else [
                x.sin(),
            ]
        ),
        dim=-1,
    )
    x = x.flatten(-2)
    if cat_orig:
        return torch.cat((x, x_orig), dim=-1)
    return x


# from PIL import Image
# from unidepth.utils import image_grid, colorize
# if __name__ == "__main__":
#     H, W = 512, 512
#     resolution = 128
#     mesh = torch.meshgrid(torch.linspace(-1, 1, H), torch.linspace(-1, 1, W))
#     mesh = torch.stack(mesh, dim=0).unsqueeze(0)
#     mesh = mesh.view(1, 2, -1).permute(0, 2, 1)

#     features = generate_fourier_features(mesh, dim=32, max_freq=resolution, use_log=True)
#     channels = features.shape[-1]
#     print(features.shape)

#     features = features[0].view(H, W, channels).permute(2, 0, 1).numpy()
#     Image.fromarray(image_grid([colorize(1+x, 0.0, 2.0, "viridis") for x in features], rows=8, cols=4)).save(f"tmp_{resolution}.png")