smoothjazzuser
commited on
Commit
·
1afe6fa
1
Parent(s):
dceff07
Improve speed
Browse files
app.py
CHANGED
@@ -10,7 +10,7 @@ import io
|
|
10 |
import gradio as gr
|
11 |
import PIL
|
12 |
|
13 |
-
model_choice =
|
14 |
model_names = ["nvidia/mit-b0",'facebook/convnext-base-224', 'microsoft/resnet-18', 'microsoft/swin-tiny-patch4-window7-224']
|
15 |
model_name = model_names[model_choice]
|
16 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
@@ -69,7 +69,7 @@ def swap_models(name):
|
|
69 |
|
70 |
swap_models(model_name)
|
71 |
|
72 |
-
def saliency_graph(img1, steps=
|
73 |
img1 = auto_transformer(img1)
|
74 |
img1 = np.squeeze(np.array(img1.pixel_values))
|
75 |
if img1.shape[0] < img1.shape[1]:
|
@@ -137,7 +137,7 @@ def saliency_graph(img1, steps=120):
|
|
137 |
|
138 |
# gradio Interface
|
139 |
def gradio_interface(img):
|
140 |
-
smoothgrad_mask_grayscale, fig_img = saliency_graph(img, steps=
|
141 |
return smoothgrad_mask_grayscale, fig_img
|
142 |
|
143 |
with gr.Blocks(title='Looking at the pixels models attend to', description="This function finds the most critical pixels in an image for predicting a class. The best models will ideally make predictions by highlighting the expected object. Poorly generalizable models will often rely on environmental cues instead and forego looking at the most important pixels. Highlighting the most important pixels helps explain/build trust about whether a given model uses the correct features to make its prediction.", live=True) as iface:
|
@@ -147,7 +147,7 @@ with gr.Blocks(title='Looking at the pixels models attend to', description="This
|
|
147 |
with gr.Column():
|
148 |
test_image = gr.Image(label="Input Image", live=True)
|
149 |
input_btn = gr.Button(label="Classify image")
|
150 |
-
model_select_dropdown = gr.Radio(model_names, label="Model to test", interactive=True, default=
|
151 |
with gr.Column():
|
152 |
output = gr.Image(label="Pixels used for classification")
|
153 |
output2 = gr.Image(label="Top 5 Predictions")
|
|
|
10 |
import gradio as gr
|
11 |
import PIL
|
12 |
|
13 |
+
model_choice = 2
|
14 |
model_names = ["nvidia/mit-b0",'facebook/convnext-base-224', 'microsoft/resnet-18', 'microsoft/swin-tiny-patch4-window7-224']
|
15 |
model_name = model_names[model_choice]
|
16 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
|
69 |
|
70 |
swap_models(model_name)
|
71 |
|
72 |
+
def saliency_graph(img1, steps=25):
|
73 |
img1 = auto_transformer(img1)
|
74 |
img1 = np.squeeze(np.array(img1.pixel_values))
|
75 |
if img1.shape[0] < img1.shape[1]:
|
|
|
137 |
|
138 |
# gradio Interface
|
139 |
def gradio_interface(img):
|
140 |
+
smoothgrad_mask_grayscale, fig_img = saliency_graph(img, steps=12)
|
141 |
return smoothgrad_mask_grayscale, fig_img
|
142 |
|
143 |
with gr.Blocks(title='Looking at the pixels models attend to', description="This function finds the most critical pixels in an image for predicting a class. The best models will ideally make predictions by highlighting the expected object. Poorly generalizable models will often rely on environmental cues instead and forego looking at the most important pixels. Highlighting the most important pixels helps explain/build trust about whether a given model uses the correct features to make its prediction.", live=True) as iface:
|
|
|
147 |
with gr.Column():
|
148 |
test_image = gr.Image(label="Input Image", live=True)
|
149 |
input_btn = gr.Button(label="Classify image")
|
150 |
+
model_select_dropdown = gr.Radio(model_names, label="Model to test", interactive=True, default=2)
|
151 |
with gr.Column():
|
152 |
output = gr.Image(label="Pixels used for classification")
|
153 |
output2 = gr.Image(label="Top 5 Predictions")
|