snoop2head
commited on
Commit
ยท
85c2795
1
Parent(s):
40607dc
change to conditional kogpt trintiy project
Browse files
app.py
CHANGED
@@ -47,12 +47,13 @@ def infer(input_ids, max_length, temperature, top_k, top_p):
|
|
47 |
|
48 |
|
49 |
# prompts
|
50 |
-
st.title("
|
51 |
-
st.write("
|
|
|
52 |
|
53 |
# text and sidebars
|
54 |
-
default_value = "
|
55 |
-
sent = st.text_area("Text", default_value, max_chars=
|
56 |
max_length = st.sidebar.slider("์์ฑ ๋ฌธ์ฅ ๊ธธ์ด๋ฅผ ์ ํํด์ฃผ์ธ์!", min_value=42, max_value=64)
|
57 |
temperature = st.sidebar.slider(
|
58 |
"Temperature", value=1.0, min_value=0.0, max_value=1.0, step=0.05
|
@@ -93,67 +94,25 @@ def infer_sentence(
|
|
93 |
generated_sequence = output_sequences[0]
|
94 |
print(generated_sequence)
|
95 |
|
96 |
-
# print(f"=== GENERATED SEQUENCE {generated_sequence_idx + 1} ===")
|
97 |
-
# generated_sequences = generated_sequence.tolist()
|
98 |
# Decode text
|
99 |
text = tokenizer.decode(generated_sequence, clean_up_tokenization_spaces=True)
|
100 |
print(text)
|
101 |
-
|
|
|
102 |
stop_token = tokenizer.pad_token
|
103 |
print(stop_token)
|
104 |
text = text[: text.find(stop_token) if stop_token else None]
|
105 |
print(text)
|
106 |
-
|
|
|
107 |
condition_index = find_nth(text, "๋ฌธ์ฅ์ด๋ค", 2)
|
108 |
text = text[condition_index + 5 :]
|
109 |
text = text.strip()
|
110 |
return text
|
111 |
|
112 |
|
113 |
-
|
114 |
-
|
115 |
-
list_samhaengshi = []
|
116 |
-
|
117 |
-
# initializing text and index for iteration purpose
|
118 |
-
index = 0
|
119 |
-
|
120 |
-
# iterating over the input letter string
|
121 |
-
for index, letter_item in enumerate(input_letter):
|
122 |
-
# initializing the input_letter
|
123 |
-
if index == 0:
|
124 |
-
residual_text = letter_item
|
125 |
-
# print('residual_text:', residual_text)
|
126 |
-
|
127 |
-
# infer and add to the output
|
128 |
-
conditional_input = f"{condition_sentence} {residual_text}"
|
129 |
-
inferred_sentence = infer_sentence(conditional_input, tokenizer)
|
130 |
-
if index != 0:
|
131 |
-
# remove previous sentence from the output
|
132 |
-
print("inferred_sentence:", inferred_sentence)
|
133 |
-
inferred_sentence = inferred_sentence.replace(
|
134 |
-
list_samhaengshi[index - 1], ""
|
135 |
-
).strip()
|
136 |
-
else:
|
137 |
-
pass
|
138 |
-
list_samhaengshi.append(inferred_sentence)
|
139 |
-
|
140 |
-
# until the end of the input_letter, give the previous residual_text to the next iteration
|
141 |
-
if index < len(input_letter) - 1:
|
142 |
-
residual_sentence = list_samhaengshi[index]
|
143 |
-
next_letter = input_letter[index + 1]
|
144 |
-
residual_text = (
|
145 |
-
f"{residual_sentence} {next_letter}" # previous sentence + next letter
|
146 |
-
)
|
147 |
-
print("residual_text", residual_text)
|
148 |
-
|
149 |
-
elif index == len(input_letter) - 1: # end of the input_letter
|
150 |
-
# Concatenate strings in the list without intersection
|
151 |
-
|
152 |
-
return list_samhaengshi
|
153 |
-
|
154 |
-
|
155 |
-
return_text = make_residual_conditional_samhaengshi(
|
156 |
-
input_letter=sent, condition_sentence=condition_sentence
|
157 |
)
|
158 |
|
159 |
print(return_text)
|
|
|
47 |
|
48 |
|
49 |
# prompts
|
50 |
+
st.title("์ฃผ์ด์ง ๊ฐ์ ์ ๋ง๊ฒ ๋ฌธ์ฅ์ ๋ง๋๋ KoGPT์
๋๋ค ๐ฆ")
|
51 |
+
st.write("์ข์ธก์ ๊ฐ์ ์ํ์ ๋ณํ๋ฅผ ์ค๋ณด์ธ์.")
|
52 |
+
st.write("์
๋ ฅํ๊ณ ๋์ CTRL+Enter(CMD+Enter)๋ฅผ ๋๋ฅด์ธ์ ๐ค")
|
53 |
|
54 |
# text and sidebars
|
55 |
+
default_value = "์์ํ ๋ฐค๋ค์ด ๊ณ์๋๋ ๋ ์ธ์ ๊ฐ๋ถํฐ ๋๋"
|
56 |
+
sent = st.text_area("Text", default_value, max_chars=30, height=275)
|
57 |
max_length = st.sidebar.slider("์์ฑ ๋ฌธ์ฅ ๊ธธ์ด๋ฅผ ์ ํํด์ฃผ์ธ์!", min_value=42, max_value=64)
|
58 |
temperature = st.sidebar.slider(
|
59 |
"Temperature", value=1.0, min_value=0.0, max_value=1.0, step=0.05
|
|
|
94 |
generated_sequence = output_sequences[0]
|
95 |
print(generated_sequence)
|
96 |
|
|
|
|
|
97 |
# Decode text
|
98 |
text = tokenizer.decode(generated_sequence, clean_up_tokenization_spaces=True)
|
99 |
print(text)
|
100 |
+
|
101 |
+
# Remove all text after the pad token
|
102 |
stop_token = tokenizer.pad_token
|
103 |
print(stop_token)
|
104 |
text = text[: text.find(stop_token) if stop_token else None]
|
105 |
print(text)
|
106 |
+
|
107 |
+
# Remove condition sentence
|
108 |
condition_index = find_nth(text, "๋ฌธ์ฅ์ด๋ค", 2)
|
109 |
text = text[condition_index + 5 :]
|
110 |
text = text.strip()
|
111 |
return text
|
112 |
|
113 |
|
114 |
+
return_text = infer_sentence(
|
115 |
+
condition_plus_input=condition_plus_input, tokenizer=tokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
)
|
117 |
|
118 |
print(return_text)
|