sofmi's picture
checking. resizing background image
42956cc
import gradio as gr
import torch
import torchvision
from dlclive import DLCLive, Processor
from PIL import Image
from PIL import ImageFont
from PIL import ImageDraw
import numpy as np
import math
# import json
import os
import yaml
# import pdb
#########################################
def draw_keypoints_on_image(image,
keypoints,
map_label_id_to_str,
color='red',
radius=2,
use_normalized_coordinates=True,
):
"""Draws keypoints on an image.
Modified from:
https://www.programcreek.com/python/?code=fjchange%2Fobject_centric_VAD%2Fobject_centric_VAD-master%2Fobject_detection%2Futils%2Fvisualization_utils.py
Args:
image: a PIL.Image object.
keypoints: a numpy array with shape [num_keypoints, 2].
color: color to draw the keypoints with. Default is red.
radius: keypoint radius. Default value is 2.
use_normalized_coordinates: if True (default), treat keypoint values as
relative to the image. Otherwise treat them as absolute.
"""
# get a drawing context
draw = ImageDraw.Draw(image)
# font = ImageFont.truetype("sans-serif.ttf", 16)
im_width, im_height = image.size
keypoints_x = [k[0] for k in keypoints]
keypoints_y = [k[1] for k in keypoints]
# adjust keypoints coords if required
if use_normalized_coordinates:
keypoints_x = tuple([im_width * x for x in keypoints_x])
keypoints_y = tuple([im_height * y for y in keypoints_y])
# draw ellipses around keypoints and add string labels
font = ImageFont.truetype("Amiko-Regular.ttf", 8) # font = ImageFont.truetype(<font-file>, <font-size>)
for i, (keypoint_x, keypoint_y) in enumerate(zip(keypoints_x, keypoints_y)):
draw.ellipse([(keypoint_x - radius, keypoint_y - radius),
(keypoint_x + radius, keypoint_y + radius)],
outline=color, fill=color)
# add string labels around keypoints
# draw.text((x, y),"Sample Text",(r,g,b))
draw.text((keypoint_x + radius, keypoint_y + radius),#(0.5*im_width, 0.5*im_height), #-------
map_label_id_to_str[i],#"Sample Text",
(255,0,0), # rgb
font=font)
############################################
# Predict detections with MegaDetector v5a model
def predict_md(im, size=640):
# resize image
g = (size / max(im.size)) # gain
im = im.resize((int(x * g) for x in im.size), Image.ANTIALIAS) # resize
## detect objects
results = MD_model(im) # inference # vars(results).keys()= dict_keys(['imgs', 'pred', 'names', 'files', 'times', 'xyxy', 'xywh', 'xyxyn', 'xywhn', 'n', 't', 's'])
results.render() # updates results.imgs with boxes and labels
return results #Image.fromarray(results.imgs[0]) ---return animals only?
def crop_animal_detections(yolo_results,
likelihood_th):
## crop if animal and return list of crops
list_labels_as_str = yolo_results.names #['animal', 'person', 'vehicle']
list_np_animal_crops = []
# for every image
for img, det_array in zip(yolo_results.imgs,
yolo_results.xyxy):
# for every detection
for j in range(det_array.shape[0]):
# compute coords around bbox rounded to the nearest integer (for pasting later)
xmin_rd = int(math.floor(det_array[j,0])) # int() should suffice?
ymin_rd = int(math.floor(det_array[j,1]))
xmax_rd = int(math.ceil(det_array[j,2]))
ymax_rd = int(math.ceil(det_array[j,3]))
pred_llk = det_array[j,4] #-----TODO: filter based on likelihood?
pred_label = det_array[j,5]
if (pred_label == list_labels_as_str.index('animal')) and \
(pred_llk >= likelihood_th):
area = (xmin_rd, ymin_rd, xmax_rd, ymax_rd)
crop = Image.fromarray(img).crop(area)
crop_np = np.asarray(crop)
# add to list
list_np_animal_crops.append(crop_np)
# for detections_dict in img_data["detections"]:
# index = img_data["detections"].index(detections_dict)
# if detections_dict["conf"] > 0.8:
# x1, y1,w_box, h_box = detections_dict["bbox"]
# ymin,xmin,ymax, xmax = y1, x1, y1 + h_box, x1 + w_box
# imageWidth=img.size[0]
# imageHeight= img.size[1]
# area = (xmin * imageWidth, ymin * imageHeight, xmax * imageWidth,
# ymax * imageHeight)
# crop = img.crop(area)
# crop_np = np.asarray(crop)
#
# if detections_dict["category"] == "1":
return list_np_animal_crops
def predict_dlc(list_np_crops,
kpts_likelihood_th,
DLCmodel,
dlc_proc):
# run dlc thru list of crops
dlc_live = DLCLive(DLCmodel, processor=dlc_proc)
dlc_live.init_inference(list_np_crops[0])
list_kpts_per_crop = []
np_aux = np.empty((1,3)) # can I avoid hardcoding?
for crop in list_np_crops:
# scale crop here?
keypts_xyp = dlc_live.get_pose(crop) # third column is llk!
# set kpts below threhsold to nan
keypts_xyp[keypts_xyp[:,-1] < kpts_likelihood_th,:] = np_aux.fill(np.nan)
# add kpts of this crop to list
list_kpts_per_crop.append(keypts_xyp)
return list_kpts_per_crop
def predict_pipeline(img_input,
model_input_str,
flag_dlc_only,
bbox_likelihood_th,
kpts_likelihood_th):
############################################################
## Get DLC model and labels as strings
if model_input_str == 'full_cat':
path_to_DLCmodel = "DLC_models/DLC_Cat_resnet_50_iteration-0_shuffle-0"
pose_cfg_path = os.path.join(path_to_DLCmodel,'pose_cfg.yaml')
elif model_input_str == 'full_dog':
path_to_DLCmodel = "DLC_models/DLC_Dog_resnet_50_iteration-0_shuffle-0"
pose_cfg_path = os.path.join(path_to_DLCmodel,'pose_cfg.yaml')
# read pose cfg as dict
with open(pose_cfg_path, "r") as stream:
pose_cfg_dict = yaml.safe_load(stream)
map_label_id_to_str = dict([(k,v) for k,v in zip([el[0] for el in pose_cfg_dict['all_joints']], # pose_cfg_dict['all_joints'] is a list of one-element lists,
pose_cfg_dict['all_joints_names'])])
############################################################
# ### Run Megadetector
md_results = predict_md(img_input) #Image.fromarray(results.imgs[0])
################################################################
# Obtain animal crops for bboxes with confidence above th
list_crops = crop_animal_detections(md_results,
bbox_likelihood_th)
##############################################################
# Run DLC
dlc_proc = Processor()
# if required: ignore MD crops and run DLC on full image [mostly for testing]
if flag_dlc_only:
# compute kpts on input img
list_kpts_per_crop = predict_dlc([np.asarray(img_input)],#list_crops,--------
kpts_likelihood_th,
path_to_DLCmodel,
dlc_proc)
# draw kpts on input img
draw_keypoints_on_image(img_input,
list_kpts_per_crop[0], # a numpy array with shape [num_keypoints, 2].
map_label_id_to_str,
color='red',
radius=2,
use_normalized_coordinates=False)
return img_input
else:
# Compute kpts for each crop
list_kpts_per_crop = predict_dlc(list_crops,
kpts_likelihood_th,
path_to_DLCmodel,
dlc_proc)
# Produce final image
img_background = img_input # img_input? Image.fromarray(md_results.imgs[0])
g = (size / max(img_background.size)) # gain
img_background = img_background.resize((int(x * g) for x in img_background.size), Image.ANTIALIAS) # resize
for ic, (np_crop, kpts_crop) in enumerate(zip(list_crops,
list_kpts_per_crop)):
## Draw keypts on crop
img_crop = Image.fromarray(np_crop)
draw_keypoints_on_image(img_crop,
kpts_crop, # a numpy array with shape [num_keypoints, 2].
map_label_id_to_str,
color='red',
radius=2,
use_normalized_coordinates=False, # if True, then I should use md_results.xyxyn
)
## Paste crop in original image
# https://pillow.readthedocs.io/en/stable/reference/Image.html#PIL.Image.Image.paste
img_background.paste(img_crop,
box = tuple([int(math.floor(t)) for t in md_results.xyxy[0][ic,:2]]))
return img_background #Image.fromarray(list_crops[0]) #Image.fromarray(md_results.imgs[0]) #list_annotated_crops #
##########################################################
# Get MegaDetector model
# TODO: Allow user selectable model?
# models = ["model_weights/md_v5a.0.0.pt","model_weights/md_v5b.0.0.pt"]
MD_model = torch.hub.load('ultralytics/yolov5', 'custom', "model_weights/md_v5a.0.0.pt")
####################################################
# Create user interface and launch
gr_image_input = gr.inputs.Image(type="pil", label="Input Image")
gr_image_output = gr.outputs.Image(type="pil", label="Output Image")
gr_dlc_model_input = gr.inputs.Dropdown(choices=['full_cat','full_dog'], # choices
default='full_cat', # default option
type='value', # Type of value to be returned by component. "value" returns the string of the choice selected, "index" returns the index of the choice selected.
label='Select DLC model')
gr_dlc_only_checkbox = gr.inputs.Checkbox(False,
label='Run DLClive only, directly on input image?')
gr_slider_conf_bboxes = gr.inputs.Slider(0,1,.05,0.8,
label='Set confidence threshold for animal detections')
gr_slider_conf_keypoints = gr.inputs.Slider(0,1,.05,0,
label='Set confidence threshold for keypoints')
#image = gr.inputs.Image(type="pil", label="Input Image")
#chosen_model = gr.inputs.Dropdown(choices = models, value = "model_weights/md_v5a.0.0.pt",type = "value", label="Model Weight")
#size = 640
gr_title = "MegaDetector v5 + DLClive"
gr_description = "Detect and estimate the pose of animals in camera trap images, using MegaDetector v5a + DeepLabCut-live. \
Builds up on work from <a href='https://huggingface.co/spaces/hlydecker/MegaDetector_v5'>hlydecker/MegaDetector_v5</a>"
# article = "<p style='text-align: center'>This app makes predictions using a YOLOv5x6 model that was trained to detect animals, humans, and vehicles in camera trap images; find out more about the project on <a href='https://github.com/microsoft/CameraTraps'>GitHub</a>. This app was built by Henry Lydecker but really depends on code and models developed by <a href='http://ecologize.org/'>Ecologize</a> and <a href='http://aka.ms/aiforearth'>Microsoft AI for Earth</a>. Find out more about the YOLO model from the original creator, <a href='https://pjreddie.com/darknet/yolo/'>Joseph Redmon</a>. YOLOv5 is a family of compound-scaled object detection models trained on the COCO dataset and developed by Ultralytics, and includes simple functionality for Test Time Augmentation (TTA), model ensembling, hyperparameter evolution, and export to ONNX, CoreML and TFLite. <a href='https://github.com/ultralytics/yolov5'>Source code</a> | <a href='https://pytorch.org/hub/ultralytics_yolov5'>PyTorch Hub</a></p>"
# examples = [['data/Macropod.jpg'], ['data/koala2.jpg'],['data/cat.jpg'],['data/BrushtailPossum.jpg']]
gr.Interface(predict_pipeline,
inputs=[gr_image_input,
gr_dlc_model_input,
gr_dlc_only_checkbox,
gr_slider_conf_bboxes,
gr_slider_conf_keypoints],
outputs=gr_image_output,
title=gr_title,
description=gr_description,
theme="huggingface").launch(enable_queue=True)
# def dlclive_pose(model, crop_np, crop, fname, index,dlc_proc):
# dlc_live = DLCLive(model, processor=dlc_proc)
# dlc_live.init_inference(crop_np)
# keypts = dlc_live.get_pose(crop_np)
# savetxt(str(fname)+ '_' + str(index) + '.csv' , keypts, delimiter=',')
# xpose = []
# ypose = []
# for key in keypts[:,2]:
# # if key > 0.05: # which value do we need here?
# i = np.where(keypts[:,2]==key)
# xpose.append(keypts[i,0])
# ypose.append(keypts[i,1])
# plt.imshow(crop)
# plt.scatter(xpose[:], ypose[:], 40, color='cyan')
# plt.savefig(str(fname)+ '_' + str(index) + '.png')
# plt.show()
# plt.clf()