Spaces:
Runtime error
Runtime error
File size: 4,525 Bytes
1a63d97 35d97c8 552fb1e 35d97c8 552fb1e 35d97c8 1a63d97 35d97c8 1a63d97 35d97c8 1a63d97 54d4a4a 1a63d97 35d97c8 1a63d97 361f9d4 87dcd10 1a63d97 156e5b3 361f9d4 156e5b3 c490c32 156e5b3 87dcd10 156e5b3 149eeaf 156e5b3 c490c32 156e5b3 149eeaf 1a63d97 156e5b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 |
import asyncio
import itertools
import json
import os
import torch
import openai
class ChatService:
def __init__(self, api="openai", model_id = "gpt-3.5-turbo"):
self._api = api
self._device = "cuda:0" if torch.cuda.is_available() else "cpu"
openai.api_key = os.getenv("OPENAI_API_KEY")
self._model_id = model_id
def _should_we_send_to_voice(self, sentence):
sentence_termination_characters = [".", "?", "!"]
close_brackets = ['"', ')', ']']
temination_charicter_present = any(c in sentence for c in sentence_termination_characters)
# early exit if we don't have a termination character
if not temination_charicter_present:
return None
# early exit the last char is a termination character
if sentence[-1] in sentence_termination_characters:
return None
# early exit the last char is a close bracket
if sentence[-1] in close_brackets:
return None
termination_indices = [sentence.rfind(char) for char in sentence_termination_characters]
# Filter out termination indices that are not followed by whitespace or end of string
termination_indices = [i for i in termination_indices if sentence[i+1].isspace()]
last_termination_index = max(termination_indices)
# handle case of close bracket
while last_termination_index+1 < len(sentence) and sentence[last_termination_index+1] in close_brackets:
last_termination_index += 1
text_to_speak = sentence[:last_termination_index+1]
return text_to_speak
def ignore_sentence(self, text_to_speak):
# exit if empty, white space or an single breaket
if text_to_speak.isspace():
return True
# exit if not letters or numbers
has_letters = any(char.isalpha() for char in text_to_speak)
has_numbers = any(char.isdigit() for char in text_to_speak)
if not has_letters and not has_numbers:
return True
return False
async def get_responses_as_sentances_async(self, messages, cancel_event=None):
llm_response = ""
current_sentence = ""
delay = 0.1
while True:
try:
response = await openai.ChatCompletion.acreate(
model=self._model_id,
messages=messages,
temperature=1.0, # use 0 for debugging/more deterministic results
stream=True
)
async for chunk in response:
if cancel_event is not None and cancel_event.is_set():
return
chunk_message = chunk['choices'][0]['delta']
if 'content' in chunk_message:
chunk_text = chunk_message['content']
current_sentence += chunk_text
llm_response += chunk_text
text_to_speak = self._should_we_send_to_voice(current_sentence)
if text_to_speak:
current_sentence = current_sentence[len(text_to_speak):]
yield text_to_speak, True
else:
yield current_sentence, False
if cancel_event is not None and cancel_event.is_set():
return
if len(current_sentence) > 0:
yield current_sentence, True
return
except openai.error.APIError as e:
print(f"OpenAI API returned an API Error: {e}")
print(f"Retrying in {delay} seconds...")
await asyncio.sleep(delay)
delay *= 2
except openai.error.APIConnectionError as e:
print(f"Failed to connect to OpenAI API: {e}")
print(f"Retrying in {delay} seconds...")
await asyncio.sleep(delay)
delay *= 2
except openai.error.RateLimitError as e:
print(f"OpenAI API request exceeded rate limit: {e}")
print(f"Retrying in {delay} seconds...")
await asyncio.sleep(delay)
delay *= 2
except Exception as e:
print(f"OpenAI API unknown error: {e}")
print(f"Retrying in {delay} seconds...")
await asyncio.sleep(delay)
delay *= 2 |