sohomghosh commited on
Commit
42a15d2
·
1 Parent(s): da62a59

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +35 -0
app.py ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import nltk
3
+ import pandas as pd
4
+ nltk.download('punkt')
5
+ from fincat_utils import extract_context_words
6
+ from fincat_utils import bert_embedding_extract
7
+ import pickle
8
+ lr_clf = pickle.load(open("lr_clf_FiNCAT.pickle",'rb'))
9
+
10
+ def score_fincat(txt):
11
+ li = []
12
+ highlight = []
13
+ for word in txt.split():
14
+ if any(char.isdigit() for char in word):
15
+ if word[-1] in ['.', ',', ';', ":", "-", "!", "?", ")", '"', "'"]:
16
+ word = word[:-1]
17
+ st = txt.index(word)
18
+ ed = st + len(word)
19
+ x = {'paragraph' : txt, 'offset_start':st, 'offset_end':ed}
20
+ context_text = extract_context_words(x)
21
+ features = bert_embedding_extract(context_text, word)
22
+ prediction = lr_clf.predict(features.reshape(1, 768))
23
+ prediction_probability = '{:.4f}'.format(round(lr_clf.predict_proba(features.reshape(1, 768))[:,1][0], 4))
24
+ highlight.append((word, ' In-claim' if prediction==1 else 'Out-of-Claim'))
25
+ li.append([word,' In-claim' if prediction==1 else 'Out-of-Claim', prediction_probability])
26
+ else:
27
+ highlight.append((word, ' '))
28
+ headers = ['numeral', 'prediction', 'probability']
29
+ dff = pd.DataFrame(li)
30
+ dff.columns = headers
31
+
32
+ return highlight, dff
33
+
34
+ iface = gr.Interface(fn=score_fincat, inputs=gr.inputs.Textbox(lines=5, placeholder="Enter Financial Text here..."), title="FiNCAT-2",description="Financial Numeral Claim Analysis Tool (Enhanced)", outputs=["highlight", "dataframe"], allow_flagging="never", examples=["In the year 2021, the markets were bullish. We expect to boost our sales by 80% this year.", "Last year our profit was $2.2M. This year it will increase to $3M"])
35
+ iface.launch()