Spaces:
Sleeping
Sleeping
import torch | |
from torch_geometric.nn import SAGEConv, to_hetero, Linear | |
from dotenv import load_dotenv | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
data = torch.load("./PyGdata.pt", map_location=device) | |
class GNNEncoder(torch.nn.Module): | |
def __init__(self, hidden_channels, out_channels): | |
super().__init__() | |
self.conv1 = SAGEConv((-1, -1), hidden_channels) | |
self.conv2 = SAGEConv((-1, -1), out_channels) | |
def forward(self, x, edge_index): | |
x = self.conv1(x, edge_index).relu() | |
x = self.conv2(x, edge_index) | |
return x | |
class EdgeDecoder(torch.nn.Module): | |
def __init__(self, hidden_channels): | |
super().__init__() | |
self.lin1 = Linear(2 * hidden_channels, hidden_channels) | |
self.lin2 = Linear(hidden_channels, 1) | |
def forward(self, z_dict, edge_label_index): | |
row, col = edge_label_index | |
z = torch.cat([z_dict['user'][row], z_dict['movie'][col]], dim=-1) | |
z = self.lin1(z).relu() | |
z = self.lin2(z) | |
return z.view(-1) | |
class Model(torch.nn.Module): | |
def __init__(self, hidden_channels): | |
super().__init__() | |
self.encoder = GNNEncoder(hidden_channels, hidden_channels) | |
self.encoder = to_hetero(self.encoder, data.metadata(), aggr='sum') | |
self.decoder = EdgeDecoder(hidden_channels) | |
def forward(self, x_dict, edge_index_dict, edge_label_index): | |
z_dict = self.encoder(x_dict, edge_index_dict) | |
return self.decoder(z_dict, edge_label_index) |