Create new file
Browse files
app.py
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import cv2
|
4 |
+
import gradio as gr
|
5 |
+
import torch
|
6 |
+
from basicsr.archs.srvgg_arch import SRVGGNetCompact
|
7 |
+
from gfpgan.utils import GFPGANer
|
8 |
+
from realesrgan.utils import RealESRGANer
|
9 |
+
|
10 |
+
os.system("pip freeze")
|
11 |
+
# download weights
|
12 |
+
if not os.path.exists('realesr-general-x4v3.pth'):
|
13 |
+
os.system("wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -P .")
|
14 |
+
if not os.path.exists('GFPGANv1.2.pth'):
|
15 |
+
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.2.pth -P .")
|
16 |
+
if not os.path.exists('GFPGANv1.3.pth'):
|
17 |
+
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth -P .")
|
18 |
+
if not os.path.exists('GFPGANv1.4.pth'):
|
19 |
+
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth -P .")
|
20 |
+
if not os.path.exists('RestoreFormer.pth'):
|
21 |
+
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/RestoreFormer.pth -P .")
|
22 |
+
if not os.path.exists('CodeFormer.pth'):
|
23 |
+
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/CodeFormer.pth -P .")
|
24 |
+
|
25 |
+
torch.hub.download_url_to_file(
|
26 |
+
'https://upload.wikimedia.org/wikipedia/commons/thumb/a/ab/Abraham_Lincoln_O-77_matte_collodion_print.jpg/1024px-Abraham_Lincoln_O-77_matte_collodion_print.jpg',
|
27 |
+
'lincoln.jpg')
|
28 |
+
torch.hub.download_url_to_file(
|
29 |
+
'https://user-images.githubusercontent.com/17445847/187400315-87a90ac9-d231-45d6-b377-38702bd1838f.jpg',
|
30 |
+
'AI-generate.jpg')
|
31 |
+
torch.hub.download_url_to_file(
|
32 |
+
'https://user-images.githubusercontent.com/17445847/187400981-8a58f7a4-ef61-42d9-af80-bc6234cef860.jpg',
|
33 |
+
'Blake_Lively.jpg')
|
34 |
+
torch.hub.download_url_to_file(
|
35 |
+
'https://user-images.githubusercontent.com/17445847/187401133-8a3bf269-5b4d-4432-b2f0-6d26ee1d3307.png',
|
36 |
+
'10045.png')
|
37 |
+
|
38 |
+
# background enhancer with RealESRGAN
|
39 |
+
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
|
40 |
+
model_path = 'realesr-general-x4v3.pth'
|
41 |
+
half = True if torch.cuda.is_available() else False
|
42 |
+
upsampler = RealESRGANer(scale=4, model_path=model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half)
|
43 |
+
|
44 |
+
os.makedirs('output', exist_ok=True)
|
45 |
+
|
46 |
+
|
47 |
+
# def inference(img, version, scale, weight):
|
48 |
+
def inference(img, version, scale):
|
49 |
+
# weight /= 100
|
50 |
+
print(img, version, scale)
|
51 |
+
try:
|
52 |
+
extension = os.path.splitext(os.path.basename(str(img)))[1]
|
53 |
+
img = cv2.imread(img, cv2.IMREAD_UNCHANGED)
|
54 |
+
if len(img.shape) == 3 and img.shape[2] == 4:
|
55 |
+
img_mode = 'RGBA'
|
56 |
+
elif len(img.shape) == 2: # for gray inputs
|
57 |
+
img_mode = None
|
58 |
+
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
|
59 |
+
else:
|
60 |
+
img_mode = None
|
61 |
+
|
62 |
+
h, w = img.shape[0:2]
|
63 |
+
if h < 300:
|
64 |
+
img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4)
|
65 |
+
|
66 |
+
if version == 'v1.2':
|
67 |
+
face_enhancer = GFPGANer(
|
68 |
+
model_path='GFPGANv1.2.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
|
69 |
+
elif version == 'v1.3':
|
70 |
+
face_enhancer = GFPGANer(
|
71 |
+
model_path='GFPGANv1.3.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
|
72 |
+
elif version == 'v1.4':
|
73 |
+
face_enhancer = GFPGANer(
|
74 |
+
model_path='GFPGANv1.4.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
|
75 |
+
elif version == 'RestoreFormer':
|
76 |
+
face_enhancer = GFPGANer(
|
77 |
+
model_path='RestoreFormer.pth', upscale=2, arch='RestoreFormer', channel_multiplier=2, bg_upsampler=upsampler)
|
78 |
+
# elif version == 'CodeFormer':
|
79 |
+
# face_enhancer = GFPGANer(
|
80 |
+
# model_path='CodeFormer.pth', upscale=2, arch='CodeFormer', channel_multiplier=2, bg_upsampler=upsampler)
|
81 |
+
|
82 |
+
try:
|
83 |
+
# _, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True, weight=weight)
|
84 |
+
_, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
|
85 |
+
except RuntimeError as error:
|
86 |
+
print('Error', error)
|
87 |
+
|
88 |
+
try:
|
89 |
+
if scale != 2:
|
90 |
+
interpolation = cv2.INTER_AREA if scale < 2 else cv2.INTER_LANCZOS4
|
91 |
+
h, w = img.shape[0:2]
|
92 |
+
output = cv2.resize(output, (int(w * scale / 2), int(h * scale / 2)), interpolation=interpolation)
|
93 |
+
except Exception as error:
|
94 |
+
print('wrong scale input.', error)
|
95 |
+
if img_mode == 'RGBA': # RGBA images should be saved in png format
|
96 |
+
extension = 'png'
|
97 |
+
else:
|
98 |
+
extension = 'jpg'
|
99 |
+
save_path = f'output/out.{extension}'
|
100 |
+
cv2.imwrite(save_path, output)
|
101 |
+
|
102 |
+
output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB)
|
103 |
+
return output, save_path
|
104 |
+
except Exception as error:
|
105 |
+
print('global exception', error)
|
106 |
+
return None, None
|
107 |
+
|
108 |
+
|
109 |
+
title = "Image Upscaling & Restoration(esp. Face) using GFPGAN Algorithm"
|
110 |
+
description = r"""Gradio demo for <a href='https://github.com/TencentARC/GFPGAN' target='_blank'><b>GFPGAN: Towards Real-World Blind Face Restoration and Upscalling of the image with a Generative Facial Prior</b></a>.<br>
|
111 |
+
Practically the algorithm is used to restore your **old photos** or improve **AI-generated faces**.<br>
|
112 |
+
To use it, simply just upload the concerned image.<br>
|
113 |
+
"""
|
114 |
+
article = r"""
|
115 |
+
[![download](https://img.shields.io/github/downloads/TencentARC/GFPGAN/total.svg)](https://github.com/TencentARC/GFPGAN/releases)
|
116 |
+
[![GitHub Stars](https://img.shields.io/github/stars/TencentARC/GFPGAN?style=social)](https://github.com/TencentARC/GFPGAN)
|
117 |
+
[![arXiv](https://img.shields.io/badge/arXiv-Paper-<COLOR>.svg)](https://arxiv.org/abs/2101.04061)
|
118 |
+
<center><img src='https://visitor-badge.glitch.me/badge?page_id=dj_face_restoration_GFPGAN' alt='visitor badge'></center>
|
119 |
+
"""
|
120 |
+
demo = gr.Interface(
|
121 |
+
inference, [
|
122 |
+
gr.inputs.Image(type="filepath", label="Input"),
|
123 |
+
# gr.inputs.Radio(['v1.2', 'v1.3', 'v1.4', 'RestoreFormer', 'CodeFormer'], type="value", default='v1.4', label='version'),
|
124 |
+
gr.inputs.Radio(['v1.2', 'v1.3', 'v1.4', 'RestoreFormer'], type="value", default='v1.4', label='version'),
|
125 |
+
gr.inputs.Number(label="Rescaling factor", default=2),
|
126 |
+
# gr.Slider(0, 100, label='Weight, only for CodeFormer. 0 for better quality, 100 for better identity', default=50)
|
127 |
+
], [
|
128 |
+
gr.outputs.Image(type="numpy", label="Output (The whole image)"),
|
129 |
+
gr.outputs.File(label="Download the output image")
|
130 |
+
],
|
131 |
+
title=title,
|
132 |
+
description=description,
|
133 |
+
article=article,
|
134 |
+
# examples=[['AI-generate.jpg', 'v1.4', 2, 50], ['lincoln.jpg', 'v1.4', 2, 50], ['Blake_Lively.jpg', 'v1.4', 2, 50],
|
135 |
+
# ['10045.png', 'v1.4', 2, 50]]).launch()
|
136 |
+
examples=[['AI-generate.jpg', 'v1.4', 2], ['lincoln.jpg', 'v1.4', 2], ['Blake_Lively.jpg', 'v1.4', 2],
|
137 |
+
['10045.png', 'v1.4', 2]])
|
138 |
+
demo.queue(concurrency_count=4)
|
139 |
+
demo.launch()
|