Ritwika-Das-Gupta's picture
Rename app (1).py to app.py
3550ce5 verified
#!/usr/bin/env python
# coding: utf-8
# In[1]:
#!/usr/bin/env python
# coding: utf-8
# In[3]:
#!pip install torchaudio
# In[2]:
from IPython.display import Audio
import IPython.display as ipd
from scipy.io import wavfile
import numpy as np
import warnings
import re
warnings.filterwarnings("ignore")
import soundfile as sf
import librosa
import torch
import os
import soundfile as sf
import librosa
import noisereduce as nr
import numpy as np
import gradio as gr
import pyloudnorm as pyln
# import torchaudio
from transformers import Wav2Vec2ForCTC, Wav2Vec2Tokenizer
from transformers import AutoModelForCTC, AutoProcessor, AutoTokenizer, AutoModelForCausalLM
from transformers import pipeline, AutoProcessor, AutoModelForSpeechSeq2Seq
import pandas as pd
from transformers import pipeline, AutoModelForAudioClassification, AutoProcessor
# In[3]:
# In[3]:
# Set device and dtype
device = "cuda:0" if torch.cuda.is_available() else "cpu"
# device= "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
lid_model_id = "facebook/mms-lid-126"
lid_pipeline = pipeline("audio-classification", model=lid_model_id,device=device)
language_mapping = {
"hin": "hindi",
"ben": "bengali",
"eng": "english",
"guj": "gujarati"
}
# In[4]:
def detect_language_for_audio_file(audio_file_path, lid_pipeline, target_sampling_rate=16000):
"""
Detects the language of a given audio file and returns a DataFrame.
Parameters:
- audio_file_path (str): The path to the audio file.
- lid_pipeline: The language identification pipeline.
- target_sampling_rate (int): The target sampling rate for the audio file. Default is 16000.
Returns:
- df (pd.DataFrame): A DataFrame containing the detected language and filename.
"""
detected_languages = []
audio_filenames = []
filename = os.path.basename(audio_file_path)
waveform, original_sampling_rate = librosa.load(audio_file_path, sr=None)
if len(waveform.shape) > 1:
waveform = librosa.to_mono(waveform)
if original_sampling_rate != target_sampling_rate:
waveform = librosa.resample(waveform, orig_sr=original_sampling_rate, target_sr=target_sampling_rate)
# Perform language identification
lid_result = lid_pipeline(waveform, sampling_rate=target_sampling_rate)
detected_language = lid_result[0]['label'].split('_')[0]
print(f"Detected language for {filename}: {detected_language}")
detected_languages.append(detected_language)
audio_filenames.append(filename)
df = pd.DataFrame({
"Detected_Language": detected_languages,
"Audio_Filename": audio_filenames
})
# removing nondetected languages
df['Detected_Language'] = df['Detected_Language'].map(language_mapping)
df.dropna(inplace=True, axis= 0)
# adding model names based on language
model_names = []
for index, row in df.iterrows():
detected_language = row['Detected_Language']
model_name = "ai4bharat/indicwav2vec_v1_" + detected_language
model_names.append(model_name)
df['Model_Name'] = model_names
return df
# Example usage:
# audio_file_path = 'processed_audio.wav'
# df = detect_language_for_audio_file(audio_file_path, lid_pipeline)
# print(df)
# In[11]:
loaded_models = {}
current_loaded_model = None
def load_model_and_tokenizer(standardized_language):
global current_loaded_model
# If the requested model is already loaded, return it
if standardized_language in loaded_models:
return loaded_models[standardized_language]
# Check if the current loaded model is the same as the new one
if current_loaded_model == standardized_language:
return loaded_models[standardized_language]
# Clear the specific model currently loaded on the GPU, if any
elif current_loaded_model is not None:
del loaded_models[current_loaded_model]
torch.cuda.empty_cache()
current_loaded_model = None
# Determine the model name based on the standardized language
if standardized_language == 'hindi':
model_name = "ai4bharat/indicwav2vec-hindi"
elif standardized_language == 'odia':
model_name = "ai4bharat/indicwav2vec-odia"
elif standardized_language == 'english':
model_name = "facebook/wav2vec2-large-960h-lv60-self"
else:
model_name = "ai4bharat/indicwav2vec_v1_" + standardized_language
# Load the model and tokenizer
model = Wav2Vec2ForCTC.from_pretrained(model_name)
tokenizer = Wav2Vec2Tokenizer.from_pretrained(model_name)
# Update the loaded models and current loaded model
loaded_models[standardized_language] = (model, tokenizer)
current_loaded_model = standardized_language
return model, tokenizer
# In[6]:
# In[5]:
def perform_transcription(df):
transcriptions = []
for index, row in df.iterrows():
audio_file_path = row['Audio_Filename']
detected_language = row['Detected_Language']
standardized_language = language_mapping.get(detected_language, detected_language)
model, tokenizer = load_model_and_tokenizer(standardized_language)
input_audio, _ = librosa.load(audio_file_path, sr=16000)
input_values = tokenizer(input_audio, return_tensors="pt").input_values
with torch.no_grad():
logits = model(input_values).logits
predicted_ids = torch.argmax(logits, dim=-1)
text = tokenizer.batch_decode(predicted_ids)[0]
transcriptions.append(text)
df['Transcription'] = transcriptions
return df
# In[8]:
# In[7]:
# Loading the tokenizer and model from Hugging Face's model hub.
tokenizer = AutoTokenizer.from_pretrained("soketlabs/pragna-1b", token=os.environ.get('HF_TOKEN'))
model = AutoModelForCausalLM.from_pretrained(
"soketlabs/pragna-1b",
token=os.environ.get('HF_TOKEN'),
revision='3c5b8b1309f7d89710331ba2f164570608af0de7'
)
model.load_adapter('soketlabs/pragna-1b-it-v0.1', token=os.environ.get('HF_TOKEN'))
model = model.to(device)
# Function to generate response
def generate_response(transcription):
try:
messages = [
{"role": "system", "content": " you are a friendly bot to help the user"},
{"role": "user", "content": transcription},
]
tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
input_ids = tokenized_chat[0].to(device)
if len(input_ids.shape) == 1:
input_ids = input_ids.unsqueeze(0)
with torch.no_grad():
output = model.generate(
input_ids,
max_new_tokens=300,
do_sample=True,
top_k=5,
num_beams=1,
use_cache=False,
temperature=0.2,
repetition_penalty=1.1,
)
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
return find_last_sentence(generated_text)
except Exception as e:
print("Error during response generation:", e)
return "Response generation error: " + str(e)
# Function to find last sentence in generated text
def find_last_sentence(text):
sentence_endings = re.finditer(r'[।?!]', text)
end_positions = [ending.end() for ending in sentence_endings]
if end_positions:
return text[:end_positions[-1]]
return text
# In[9]:
# In[15]:
def generate_text_and_display_audio(row, model, tokenizer):
audio_file = row['Audio_Filename']
transcription = row['Transcription']
# Generate text
generated_text = generate_response(transcription)
generated_text = find_last_sentence(generated_text)
# Display audio
# display(ipd.Audio(audio_path))
return transcription, generated_text
# Display prompt and generated text
# print("Transcribed Text:", transcription)
# print("Generated Text:", generated_text)
# In[12]:
# In[16]:
def spectral_subtraction(audio_data, sample_rate):
# Compute short-time Fourier transform (STFT)
stft = librosa.stft(audio_data)
# Compute power spectrogram
power_spec = np.abs(stft)**2
# Estimate noise power spectrum
noise_power = np.median(power_spec, axis=1)
# Apply spectral subtraction
alpha = 2.0 # Adjustment factor, typically between 1.0 and 2.0
denoised_spec = np.maximum(power_spec - alpha * noise_power[:, np.newaxis], 0)
# Inverse STFT to obtain denoised audio
denoised_audio = librosa.istft(np.sqrt(denoised_spec) * np.exp(1j * np.angle(stft)))
return denoised_audio
def apply_compression(audio_data, sample_rate):
# Apply dynamic range compression
meter = pyln.Meter(sample_rate) # create BS.1770 meter
loudness = meter.integrated_loudness(audio_data)
# Normalize audio to target loudness of -24 LUFS
loud_norm = pyln.normalize.loudness(audio_data, loudness, -24.0)
return loud_norm
def process_audio(audio_file_path):
try:
# Read audio data
audio_data, sample_rate = librosa.load(audio_file_path)
print(f"Read audio data: {audio_file_path}, Sample Rate: {sample_rate}")
# Apply noise reduction using noisereduce
reduced_noise = nr.reduce_noise(y=audio_data, sr=sample_rate)
print("Noise reduction applied")
# Apply spectral subtraction for additional noise reduction
denoised_audio = spectral_subtraction(reduced_noise, sample_rate)
print("Spectral subtraction applied")
# Apply dynamic range compression to make foreground louder
compressed_audio = apply_compression(denoised_audio, sample_rate)
print("Dynamic range compression applied")
# Remove silent spaces
final_audio = librosa.effects.trim(compressed_audio)[0]
print("Silences trimmed")
# Save the final processed audio to a file with a fixed name
processed_file_path = 'processed_audio.wav'
sf.write(processed_file_path, final_audio, sample_rate)
print(f"Processed audio saved to: {processed_file_path}")
# Check if file exists to confirm it was saved
if not os.path.isfile(processed_file_path):
raise FileNotFoundError(f"Processed file not found: {processed_file_path}")
# Load the processed audio for transcription
processed_audio_data, _ = librosa.load(processed_file_path)
print(f"Processed audio reloaded for transcription: {processed_file_path}")
df = detect_language_for_audio_file(processed_file_path, lid_pipeline)
print(df)
df_transcription= perform_transcription(df)
print(df_transcription)
for index, row in df_transcription.iterrows():
print(index, row)
transcription, response = generate_text_and_display_audio(row, model, tokenizer)
# Transcribe audio
# transcription = transcribe_audio(processed_audio_data)
# print("Transcription completed")
# # Generate response
# response = generate_response(transcription)
# print("Response generated")
return processed_file_path, transcription, response
except Exception as e:
print("Error during audio processing:", e)
return "Error during audio processing:", str(e)
# Create Gradio interface
iface = gr.Interface(
fn=process_audio,
inputs=gr.Audio(label="Record Audio", type="filepath"),
outputs=[gr.Audio(label="Processed Audio"), gr.Textbox(label="Transcription"), gr.Textbox(label="Response")]
)
iface.launch(share=True)
# In[ ]:
# In[ ]: