smaximo's picture
Update app.py
fc62272
raw
history blame
6.98 kB
import gradio as gr
from transformers import pipeline
import torch
title = "Extractive QA Biomedicine"
description = """
<p style="text-align: justify;">
Recent research has made available Spanish Language Models trained on Biomedical corpus. This project explores the use these new models to generate extractice QA models for Biomedicine and compare their effectiveness with general masked language models.
The models were trained on the <a href="https://huggingface.co/datasets/squad_es">SQUAD_ES Dataset</a> (automatic translation of the Stanford Question Answering Dataset into Spanish). SQUAD v2 version was chosen in order to include questions that cannot be answered based on a provided context.
The models were evaluated on <a href="https://huggingface.co/datasets/hackathon-pln-es/biomed_squad_es_v2">BIOMED_SQUAD_ES_V2 Dataset</a> , a subset of the SQUAD_ES evalutaion dataset containing questions related to the Biomedical domain.
</p>
"""
article = """
<p style="text-align: justify;">
<h3>Results</h3>
<table class="table table-bordered table-hover table-condensed">
<thead><tr><th title="Field #1">Model</th>
<th title="Field #2">Base Model Domain</th>
<th title="Field #3">exact</th>
<th title="Field #4">f1</th>
<th title="Field #5">HasAns_exact</th>
<th title="Field #6">HasAns_f1</th>
<th title="Field #7">NoAns_exact</th>
<th title="Field #8">NoAns_f1</th>
</tr></thead>
<tbody><tr>
<td><a href="https://huggingface.co/hackathon-pln-es/roberta-base-bne-squad2-es">hackathon-pln-es/roberta-base-bne-squad2-es</a></td>
<td>General</td>
<td align="right">67.6341</td>
<td align="right">75.6988</td>
<td align="right">53.7367</td>
<td align="right">70.0526</td>
<td align="right">81.2174</td>
<td align="right">81.2174</td>
</tr>
<tr>
<td><a href="https://huggingface.co/hackathon-pln-es/roberta-base-biomedical-clinical-es-squad2-es">hackathon-pln-es/roberta-base-biomedical-clinical-es-squad2-es</a></td>
<td>Biomedical</td>
<td align="right">66.8426</td>
<td align="right">75.2346</td>
<td align="right">53.0249</td>
<td align="right">70.0031</td>
<td align="right">80.3478</td>
<td align="right">80.3478</td>
</tr>
<tr>
<td><a href="https://huggingface.co/hackathon-pln-es/roberta-base-biomedical-es-squad2-es">hackathon-pln-es/roberta-base-biomedical-es-squad2-es</a></td>
<td>Biomedical</td>
<td align="right">67.6341</td>
<td align="right">74.5612</td>
<td align="right">47.6868</td>
<td align="right">61.7012</td>
<td align="right">87.1304</td>
<td align="right"> 87.1304</td>
</tr>
<tr>
<td><a href="https://huggingface.co/hackathon-pln-es/biomedtra-small-es-squad2-es">hackathon-pln-es/biomedtra-small-es-squad2-es</a></td>
<td>Biomedical</td>
<td align="right">34.4767</td>
<td align="right">44.3294</td>
<td align="right">45.3737</td>
<td align="right">65.307</td>
<td align="right">23.8261</td>
<td align="right">23.8261</td>
</tr>
</tbody></table>
<h3>Conclusion and Future Work</h3>
If F1 Score is considered, the results show that there may be no advantage in using domain-specific masked language models to generate Biomedical QA models.
However, the F1 Scores reported for the Biomedical roberta-based models are not far below from those of the general roberta-based model.
If only unanswerable questions are taken into account, the model with the best F1 Score is <a href="https://huggingface.co/hackathon-pln-es/roberta-base-biomedical-es-squad2-es">hackathon-pln-es/roberta-base-biomedical-es-squad2-es</a>.
The model <a href="https://huggingface.co/hackathon-pln-es/biomedtra-small-es-squad2-es">hackathon-pln-es/biomedtra-small-es-squad2-es</a>, on the contrary, shows inability to correctly identify unanswerable questions.
As future work, the following experiments could be carried out:
<ul>
<li>Create Biomedical masked-language models adapted from a general model, to preserve words and features of Spanish that are also present in Biomedical questions and articles. The Biomedical base models used in the project were trained from scratch from a Biomedical corpus.
<li>Create a Biomedical training dataset with SQUAD v2 format.
<li>Generate a new and larger Spanish Biomedical validation dataset, not translated from English as in the case of SQUAD_ES Dataset.
<li>Ensamble different models.
</ul>
</p>
<h3>Team</h3>
<a href="https://huggingface.co/smaximo">Santiago Maximo</a>
"""
device = 0 if torch.cuda.is_available() else -1
MODEL_NAMES = ["hackathon-pln-es/roberta-base-bne-squad2-es",
"hackathon-pln-es/roberta-base-biomedical-clinical-es-squad2-es",
"hackathon-pln-es/roberta-base-biomedical-es-squad2-es",
"hackathon-pln-es/biomedtra-small-es-squad2-es"]
examples = [
[MODEL_NAMES[2], "¿Qué cidippido se utiliza como descripción de los ctenóforos en la mayoría de los libros de texto?","Para un filo con relativamente pocas especies, los ctenóforos tienen una amplia gama de planes corporales. Las especies costeras necesitan ser lo suficientemente duras para soportar las olas y remolcar partículas de sedimentos, mientras que algunas especies oceánicas son tan frágiles que es muy difícil capturarlas intactas para su estudio. Además, las especies oceánicas no conservan bien, y son conocidas principalmente por fotografías y notas de observadores. Por lo tanto, la mayor atención se ha concentrado recientemente en tres géneros costeros: Pleurobrachia, Beroe y Mnemiopsis. Al menos dos libros de texto basan sus descripciones de ctenóforos en los cidipépidos Pleurobrachia."],
[MODEL_NAMES[0], "¿Dónde se atasca un fagocito en un patógeno?", "La fagocitosis es una característica importante de la inmunidad celular innata llevada a cabo por células llamadas fagocitos que absorben, o comen, patógenos o partículas. Los fagocitos generalmente patrullan el cuerpo en busca de patógenos, pero pueden ser llamados a lugares específicos por citoquinas. Una vez que un patógeno ha sido absorbido por un fagocito, queda atrapado en una vesícula intracelular llamada fagosoma, que posteriormente se fusiona con otra vesícula llamada lisosoma para formar un fagocito."],
]
def getanswer(model_name, question, context):
question_answerer = pipeline("question-answering", model=model_name, device=device)
response = question_answerer({
'question': question,
'context': context
})
return response['answer'],response['score']
face = gr.Interface(
fn=getanswer,
inputs=[
gr.inputs.Radio(
label="Pick a QA Model",
choices=MODEL_NAMES,
),
gr.inputs.Textbox(lines=1, placeholder="Question Here… "),
gr.inputs.Textbox(lines=10, placeholder="Context Here… ")
],
outputs=[
gr.outputs.Textbox(label="Answer"),
gr.outputs.Textbox(label="Score"),
],
layout="vertical",
title=title,
examples=examples,
description=description,
article=article,
allow_flagging ="never"
)
face.launch()