import streamlit as st | |
import utils | |
from transformers import pipeline | |
from transformers import AutoTokenizer | |
from transformers import AutoModelForSequenceClassification | |
##################### | |
model_id='hackathon-somos-nlp-2023/DiagTrast' | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
classifier = pipeline("text-classification", | |
model=model_id) | |
##################### | |
st.title('Diagnóstico de Trastornos Mentales') | |
sintomas = st.text_input(label = 'Introduce síntomas', | |
value = '') | |
st.markdown(classifier(utils.clean_text(sintomas))) |