File size: 5,162 Bytes
c1b3a0c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
/*
* Copyright 2019 gRPC authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
const INITIAL_BACKOFF_MS = 1000;
const BACKOFF_MULTIPLIER = 1.6;
const MAX_BACKOFF_MS = 120000;
const BACKOFF_JITTER = 0.2;
/**
* Get a number uniformly at random in the range [min, max)
* @param min
* @param max
*/
function uniformRandom(min: number, max: number) {
return Math.random() * (max - min) + min;
}
export interface BackoffOptions {
initialDelay?: number;
multiplier?: number;
jitter?: number;
maxDelay?: number;
}
export class BackoffTimeout {
/**
* The delay time at the start, and after each reset.
*/
private readonly initialDelay: number = INITIAL_BACKOFF_MS;
/**
* The exponential backoff multiplier.
*/
private readonly multiplier: number = BACKOFF_MULTIPLIER;
/**
* The maximum delay time
*/
private readonly maxDelay: number = MAX_BACKOFF_MS;
/**
* The maximum fraction by which the delay time can randomly vary after
* applying the multiplier.
*/
private readonly jitter: number = BACKOFF_JITTER;
/**
* The delay time for the next time the timer runs.
*/
private nextDelay: number;
/**
* The handle of the underlying timer. If running is false, this value refers
* to an object representing a timer that has ended, but it can still be
* interacted with without error.
*/
private timerId: NodeJS.Timeout;
/**
* Indicates whether the timer is currently running.
*/
private running = false;
/**
* Indicates whether the timer should keep the Node process running if no
* other async operation is doing so.
*/
private hasRef = true;
/**
* The time that the currently running timer was started. Only valid if
* running is true.
*/
private startTime: Date = new Date();
/**
* The approximate time that the currently running timer will end. Only valid
* if running is true.
*/
private endTime: Date = new Date();
constructor(private callback: () => void, options?: BackoffOptions) {
if (options) {
if (options.initialDelay) {
this.initialDelay = options.initialDelay;
}
if (options.multiplier) {
this.multiplier = options.multiplier;
}
if (options.jitter) {
this.jitter = options.jitter;
}
if (options.maxDelay) {
this.maxDelay = options.maxDelay;
}
}
this.nextDelay = this.initialDelay;
this.timerId = setTimeout(() => {}, 0);
clearTimeout(this.timerId);
}
private runTimer(delay: number) {
this.endTime = this.startTime;
this.endTime.setMilliseconds(this.endTime.getMilliseconds() + this.nextDelay);
clearTimeout(this.timerId);
this.timerId = setTimeout(() => {
this.callback();
this.running = false;
}, delay);
if (!this.hasRef) {
this.timerId.unref?.();
}
}
/**
* Call the callback after the current amount of delay time
*/
runOnce() {
this.running = true;
this.startTime = new Date();
this.runTimer(this.nextDelay);
const nextBackoff = Math.min(
this.nextDelay * this.multiplier,
this.maxDelay
);
const jitterMagnitude = nextBackoff * this.jitter;
this.nextDelay =
nextBackoff + uniformRandom(-jitterMagnitude, jitterMagnitude);
}
/**
* Stop the timer. The callback will not be called until `runOnce` is called
* again.
*/
stop() {
clearTimeout(this.timerId);
this.running = false;
}
/**
* Reset the delay time to its initial value. If the timer is still running,
* retroactively apply that reset to the current timer.
*/
reset() {
this.nextDelay = this.initialDelay;
if (this.running) {
const now = new Date();
const newEndTime = this.startTime;
newEndTime.setMilliseconds(newEndTime.getMilliseconds() + this.nextDelay);
clearTimeout(this.timerId);
if (now < newEndTime) {
this.runTimer(newEndTime.getTime() - now.getTime());
} else {
this.running = false;
}
}
}
/**
* Check whether the timer is currently running.
*/
isRunning() {
return this.running;
}
/**
* Set that while the timer is running, it should keep the Node process
* running.
*/
ref() {
this.hasRef = true;
this.timerId.ref?.();
}
/**
* Set that while the timer is running, it should not keep the Node process
* running.
*/
unref() {
this.hasRef = false;
this.timerId.unref?.();
}
/**
* Get the approximate timestamp of when the timer will fire. Only valid if
* this.isRunning() is true.
*/
getEndTime() {
return this.endTime;
}
}
|