|
""" |
|
SORT: A Simple, Online and Realtime Tracker |
|
Copyright (C) 2016-2020 Alex Bewley [email protected] |
|
|
|
This program is free software: you can redistribute it and/or modify |
|
it under the terms of the GNU General Public License as published by |
|
the Free Software Foundation, either version 3 of the License, or |
|
(at your option) any later version. |
|
|
|
This program is distributed in the hope that it will be useful, |
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
GNU General Public License for more details. |
|
|
|
You should have received a copy of the GNU General Public License |
|
along with this program. If not, see <http://www.gnu.org/licenses/>. |
|
""" |
|
from __future__ import print_function |
|
|
|
import os |
|
import numpy as np |
|
import matplotlib |
|
matplotlib.use('TkAgg') |
|
import matplotlib.pyplot as plt |
|
import matplotlib.patches as patches |
|
from skimage import io |
|
|
|
import glob |
|
import time |
|
import argparse |
|
from filterpy.kalman import KalmanFilter |
|
|
|
np.random.seed(0) |
|
|
|
|
|
def linear_assignment(cost_matrix): |
|
try: |
|
import lap |
|
_, x, y = lap.lapjv(cost_matrix, extend_cost=True) |
|
return np.array([[y[i],i] for i in x if i >= 0]) |
|
except ImportError: |
|
from scipy.optimize import linear_sum_assignment |
|
x, y = linear_sum_assignment(cost_matrix) |
|
return np.array(list(zip(x, y))) |
|
|
|
|
|
def iou_batch(bb_test, bb_gt): |
|
""" |
|
From SORT: Computes IOU between two bboxes in the form [x1,y1,x2,y2] |
|
""" |
|
bb_gt = np.expand_dims(bb_gt, 0) |
|
bb_test = np.expand_dims(bb_test, 1) |
|
|
|
xx1 = np.maximum(bb_test[..., 0], bb_gt[..., 0]) |
|
yy1 = np.maximum(bb_test[..., 1], bb_gt[..., 1]) |
|
xx2 = np.minimum(bb_test[..., 2], bb_gt[..., 2]) |
|
yy2 = np.minimum(bb_test[..., 3], bb_gt[..., 3]) |
|
w = np.maximum(0., xx2 - xx1) |
|
h = np.maximum(0., yy2 - yy1) |
|
wh = w * h |
|
o = wh / ((bb_test[..., 2] - bb_test[..., 0]) * (bb_test[..., 3] - bb_test[..., 1]) |
|
+ (bb_gt[..., 2] - bb_gt[..., 0]) * (bb_gt[..., 3] - bb_gt[..., 1]) - wh) |
|
return(o) |
|
|
|
|
|
def convert_bbox_to_z(bbox): |
|
""" |
|
Takes a bounding box in the form [x1,y1,x2,y2] and returns z in the form |
|
[x,y,s,r] where x,y is the centre of the box and s is the scale/area and r is |
|
the aspect ratio |
|
""" |
|
w = bbox[2] - bbox[0] |
|
h = bbox[3] - bbox[1] |
|
x = bbox[0] + w/2. |
|
y = bbox[1] + h/2. |
|
s = w * h |
|
r = w / float(h) |
|
return np.array([x, y, s, r]).reshape((4, 1)) |
|
|
|
|
|
def convert_x_to_bbox(x,score=None): |
|
""" |
|
Takes a bounding box in the centre form [x,y,s,r] and returns it in the form |
|
[x1,y1,x2,y2] where x1,y1 is the top left and x2,y2 is the bottom right |
|
""" |
|
w = np.sqrt(x[2] * x[3]) |
|
h = x[2] / w |
|
if(score==None): |
|
return np.array([x[0]-w/2.,x[1]-h/2.,x[0]+w/2.,x[1]+h/2.]).reshape((1,4)) |
|
else: |
|
return np.array([x[0]-w/2.,x[1]-h/2.,x[0]+w/2.,x[1]+h/2.,score]).reshape((1,5)) |
|
|
|
|
|
class KalmanBoxTracker(object): |
|
""" |
|
This class represents the internal state of individual tracked objects observed as bbox. |
|
""" |
|
count = 0 |
|
def __init__(self,bbox): |
|
""" |
|
Initialises a tracker using initial bounding box. |
|
""" |
|
|
|
self.kf = KalmanFilter(dim_x=7, dim_z=4) |
|
self.kf.F = np.array([[1,0,0,0,1,0,0],[0,1,0,0,0,1,0],[0,0,1,0,0,0,1],[0,0,0,1,0,0,0], [0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]) |
|
self.kf.H = np.array([[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0]]) |
|
|
|
self.kf.R[2:,2:] *= 10. |
|
self.kf.P[4:,4:] *= 1000. |
|
self.kf.P *= 10. |
|
self.kf.Q[-1,-1] *= 0.01 |
|
self.kf.Q[4:,4:] *= 0.01 |
|
|
|
self.kf.x[:4] = convert_bbox_to_z(bbox) |
|
self.time_since_update = 0 |
|
self.id = KalmanBoxTracker.count |
|
KalmanBoxTracker.count += 1 |
|
self.history = [] |
|
self.hits = 0 |
|
self.hit_streak = 0 |
|
self.age = 0 |
|
|
|
def update(self,bbox): |
|
""" |
|
Updates the state vector with observed bbox. |
|
""" |
|
self.time_since_update = 0 |
|
self.history = [] |
|
self.hits += 1 |
|
self.hit_streak += 1 |
|
self.kf.update(convert_bbox_to_z(bbox)) |
|
|
|
def predict(self): |
|
""" |
|
Advances the state vector and returns the predicted bounding box estimate. |
|
""" |
|
if((self.kf.x[6]+self.kf.x[2])<=0): |
|
self.kf.x[6] *= 0.0 |
|
self.kf.predict() |
|
self.age += 1 |
|
if(self.time_since_update>0): |
|
self.hit_streak = 0 |
|
self.time_since_update += 1 |
|
self.history.append(convert_x_to_bbox(self.kf.x)) |
|
return self.history[-1] |
|
|
|
def get_state(self): |
|
""" |
|
Returns the current bounding box estimate. |
|
""" |
|
return convert_x_to_bbox(self.kf.x) |
|
|
|
|
|
def associate_detections_to_trackers(detections,trackers,iou_threshold = 0.3): |
|
""" |
|
Assigns detections to tracked object (both represented as bounding boxes) |
|
|
|
Returns 3 lists of matches, unmatched_detections and unmatched_trackers |
|
""" |
|
if(len(trackers)==0): |
|
return np.empty((0,2),dtype=int), np.arange(len(detections)), np.empty((0,5),dtype=int) |
|
|
|
iou_matrix = iou_batch(detections, trackers) |
|
|
|
if min(iou_matrix.shape) > 0: |
|
a = (iou_matrix > iou_threshold).astype(np.int32) |
|
if a.sum(1).max() == 1 and a.sum(0).max() == 1: |
|
matched_indices = np.stack(np.where(a), axis=1) |
|
else: |
|
matched_indices = linear_assignment(-iou_matrix) |
|
else: |
|
matched_indices = np.empty(shape=(0,2)) |
|
|
|
unmatched_detections = [] |
|
for d, det in enumerate(detections): |
|
if(d not in matched_indices[:,0]): |
|
unmatched_detections.append(d) |
|
unmatched_trackers = [] |
|
for t, trk in enumerate(trackers): |
|
if(t not in matched_indices[:,1]): |
|
unmatched_trackers.append(t) |
|
|
|
|
|
matches = [] |
|
for m in matched_indices: |
|
if(iou_matrix[m[0], m[1]]<iou_threshold): |
|
unmatched_detections.append(m[0]) |
|
unmatched_trackers.append(m[1]) |
|
else: |
|
matches.append(m.reshape(1,2)) |
|
if(len(matches)==0): |
|
matches = np.empty((0,2),dtype=int) |
|
else: |
|
matches = np.concatenate(matches,axis=0) |
|
|
|
return matches, np.array(unmatched_detections), np.array(unmatched_trackers) |
|
|
|
|
|
class Sort(object): |
|
def __init__(self, max_age=1, min_hits=3, iou_threshold=0.3): |
|
""" |
|
Sets key parameters for SORT |
|
""" |
|
self.max_age = max_age |
|
self.min_hits = min_hits |
|
self.iou_threshold = iou_threshold |
|
self.trackers = [] |
|
self.frame_count = 0 |
|
|
|
def update(self, dets=np.empty((0, 5))): |
|
""" |
|
Params: |
|
dets - a numpy array of detections in the format [[x1,y1,x2,y2,score],[x1,y1,x2,y2,score],...] |
|
Requires: this method must be called once for each frame even with empty detections (use np.empty((0, 5)) for frames without detections). |
|
Returns the a similar array, where the last column is the object ID. |
|
|
|
NOTE: The number of objects returned may differ from the number of detections provided. |
|
""" |
|
self.frame_count += 1 |
|
|
|
trks = np.zeros((len(self.trackers), 5)) |
|
to_del = [] |
|
ret = [] |
|
for t, trk in enumerate(trks): |
|
pos = self.trackers[t].predict()[0] |
|
trk[:] = [pos[0], pos[1], pos[2], pos[3], 0] |
|
if np.any(np.isnan(pos)): |
|
to_del.append(t) |
|
trks = np.ma.compress_rows(np.ma.masked_invalid(trks)) |
|
for t in reversed(to_del): |
|
self.trackers.pop(t) |
|
matched, unmatched_dets, unmatched_trks = associate_detections_to_trackers(dets,trks, self.iou_threshold) |
|
|
|
|
|
for m in matched: |
|
self.trackers[m[1]].update(dets[m[0], :]) |
|
|
|
|
|
for i in unmatched_dets: |
|
trk = KalmanBoxTracker(dets[i,:]) |
|
self.trackers.append(trk) |
|
i = len(self.trackers) |
|
for trk in reversed(self.trackers): |
|
d = trk.get_state()[0] |
|
if (trk.time_since_update < 1) and (trk.hit_streak >= self.min_hits or self.frame_count <= self.min_hits): |
|
ret.append(np.concatenate((d,[trk.id+1])).reshape(1,-1)) |
|
i -= 1 |
|
|
|
if(trk.time_since_update > self.max_age): |
|
self.trackers.pop(i) |
|
if(len(ret)>0): |
|
return np.concatenate(ret) |
|
return np.empty((0,5)) |
|
|
|
def parse_args(): |
|
"""Parse input arguments.""" |
|
parser = argparse.ArgumentParser(description='SORT demo') |
|
parser.add_argument('--display', dest='display', help='Display online tracker output (slow) [False]',action='store_true') |
|
parser.add_argument("--seq_path", help="Path to detections.", type=str, default='data') |
|
parser.add_argument("--phase", help="Subdirectory in seq_path.", type=str, default='train') |
|
parser.add_argument("--max_age", |
|
help="Maximum number of frames to keep alive a track without associated detections.", |
|
type=int, default=1) |
|
parser.add_argument("--min_hits", |
|
help="Minimum number of associated detections before track is initialised.", |
|
type=int, default=3) |
|
parser.add_argument("--iou_threshold", help="Minimum IOU for match.", type=float, default=0.3) |
|
args = parser.parse_args() |
|
return args |
|
|
|
if __name__ == '__main__': |
|
|
|
args = parse_args() |
|
display = args.display |
|
phase = args.phase |
|
total_time = 0.0 |
|
total_frames = 0 |
|
colours = np.random.rand(32, 3) |
|
if(display): |
|
if not os.path.exists('mot_benchmark'): |
|
print('\n\tERROR: mot_benchmark link not found!\n\n Create a symbolic link to the MOT benchmark\n (https://motchallenge.net/data/2D_MOT_2015/#download). E.g.:\n\n $ ln -s /path/to/MOT2015_challenge/2DMOT2015 mot_benchmark\n\n') |
|
exit() |
|
plt.ion() |
|
fig = plt.figure() |
|
ax1 = fig.add_subplot(111, aspect='equal') |
|
|
|
if not os.path.exists('output'): |
|
os.makedirs('output') |
|
pattern = os.path.join(args.seq_path, phase, '*', 'det', 'det.txt') |
|
for seq_dets_fn in glob.glob(pattern): |
|
mot_tracker = Sort(max_age=args.max_age, |
|
min_hits=args.min_hits, |
|
iou_threshold=args.iou_threshold) |
|
seq_dets = np.loadtxt(seq_dets_fn, delimiter=',') |
|
seq = seq_dets_fn[pattern.find('*'):].split(os.path.sep)[0] |
|
|
|
with open(os.path.join('output', '%s.txt'%(seq)),'w') as out_file: |
|
print("Processing %s."%(seq)) |
|
for frame in range(int(seq_dets[:,0].max())): |
|
frame += 1 |
|
dets = seq_dets[seq_dets[:, 0]==frame, 2:7] |
|
dets[:, 2:4] += dets[:, 0:2] |
|
total_frames += 1 |
|
|
|
if(display): |
|
fn = os.path.join('mot_benchmark', phase, seq, 'img1', '%06d.jpg'%(frame)) |
|
im =io.imread(fn) |
|
ax1.imshow(im) |
|
plt.title(seq + ' Tracked Targets') |
|
|
|
start_time = time.time() |
|
trackers = mot_tracker.update(dets) |
|
cycle_time = time.time() - start_time |
|
total_time += cycle_time |
|
|
|
for d in trackers: |
|
print('%d,%d,%.2f,%.2f,%.2f,%.2f,1,-1,-1,-1'%(frame,d[4],d[0],d[1],d[2]-d[0],d[3]-d[1]),file=out_file) |
|
if(display): |
|
d = d.astype(np.int32) |
|
ax1.add_patch(patches.Rectangle((d[0],d[1]),d[2]-d[0],d[3]-d[1],fill=False,lw=3,ec=colours[d[4]%32,:])) |
|
|
|
if(display): |
|
fig.canvas.flush_events() |
|
plt.draw() |
|
ax1.cla() |
|
|
|
print("Total Tracking took: %.3f seconds for %d frames or %.1f FPS" % (total_time, total_frames, total_frames / total_time)) |
|
|
|
if(display): |
|
print("Note: to get real runtime results run without the option: --display") |
|
|