from ultralytics import YOLO | |
import cv2 | |
# Load the YOLO model | |
model = YOLO("make.pt") | |
# Define the mapping of class indices to car types | |
class_map = { | |
0: 'beige', | |
1: 'black', | |
2: 'blue', | |
3: 'brown', | |
4: 'gold', | |
5: 'green', | |
6: 'grey', | |
7: 'orange', | |
8: 'pink', | |
9: 'purple', | |
10: 'red', | |
11: 'sivler', | |
12: 'tan', | |
13: 'white', | |
14: 'yellow' | |
} | |
# Open the video file | |
video_path = 'DATA\greencar.png' | |
result = model(video_path) | |
# cap = cv2.VideoCapture(video_path) | |
# while True: | |
# ret, frame = cap.read() | |
# if not ret: | |
# break | |
# # Perform object detection | |
# results = model(frame) | |
# # Assuming the top prediction is what you're interested in | |
# top_prediction_index = results[0].probs.top5[0] # Index of the highest probability class | |
# top_prediction_prob = results[0].probs.top5conf[0].item() # Highest probability | |
# # Get the car type from the class_map | |
# # car_type = class_map[top_prediction_index] | |
# print('/n') | |
# print(f"{class_map[top_prediction_index]}") | |
# cap.release() | |
# cv2.destroyAllWindows() |