FV-latest / deepface /tests /test_find.py
songhieng's picture
Upload 195 files
7951466 verified
# built-in dependencies
import os
# 3rd party dependencies
import cv2
import pandas as pd
# project dependencies
from deepface import DeepFace
from deepface.modules import verification
from deepface.commons import image_utils
from deepface.commons.logger import Logger
logger = Logger()
threshold = verification.find_threshold(model_name="VGG-Face", distance_metric="cosine")
def test_find_with_exact_path():
img_path = os.path.join("dataset", "img1.jpg")
dfs = DeepFace.find(img_path=img_path, db_path="dataset", silent=True)
assert len(dfs) > 0
for df in dfs:
assert isinstance(df, pd.DataFrame)
# one is img1.jpg itself
identity_df = df[df["identity"] == img_path]
assert identity_df.shape[0] > 0
# validate reproducability
assert identity_df["distance"].values[0] < threshold
df = df[df["identity"] != img_path]
logger.debug(df.head())
assert df.shape[0] > 0
logger.info("βœ… test find for exact path done")
def test_find_with_array_input():
img_path = os.path.join("dataset", "img1.jpg")
img1 = cv2.imread(img_path)
dfs = DeepFace.find(img1, db_path="dataset", silent=True)
assert len(dfs) > 0
for df in dfs:
assert isinstance(df, pd.DataFrame)
# one is img1.jpg itself
identity_df = df[df["identity"] == img_path]
assert identity_df.shape[0] > 0
# validate reproducability
assert identity_df["distance"].values[0] < threshold
df = df[df["identity"] != img_path]
logger.debug(df.head())
assert df.shape[0] > 0
logger.info("βœ… test find for array input done")
def test_find_with_extracted_faces():
img_path = os.path.join("dataset", "img1.jpg")
face_objs = DeepFace.extract_faces(img_path)
img = face_objs[0]["face"]
dfs = DeepFace.find(img, db_path="dataset", detector_backend="skip", silent=True)
assert len(dfs) > 0
for df in dfs:
assert isinstance(df, pd.DataFrame)
# one is img1.jpg itself
identity_df = df[df["identity"] == img_path]
assert identity_df.shape[0] > 0
# validate reproducability
assert identity_df["distance"].values[0] < threshold
df = df[df["identity"] != img_path]
logger.debug(df.head())
assert df.shape[0] > 0
logger.info("βœ… test find for extracted face input done")
def test_filetype_for_find():
"""
only images as jpg and png can be loaded into database
"""
img_path = os.path.join("dataset", "img1.jpg")
dfs = DeepFace.find(img_path=img_path, db_path="dataset", silent=True)
df = dfs[0]
# img47 is webp even though its extension is jpg
assert df[df["identity"] == "dataset/img47.jpg"].shape[0] == 0
def test_filetype_for_find_bulk_embeddings():
imgs = image_utils.list_images("dataset")
assert len(imgs) > 0
# img47 is webp even though its extension is jpg
assert "dataset/img47.jpg" not in imgs
def test_find_without_refresh_database():
import shutil, hashlib
img_path = os.path.join("dataset", "img1.jpg")
# 1. Calculate hash of the .pkl file;
# 2. Move random image to the temporary created directory;
# 3. As a result, there will be a difference between the .pkl file and the disk files;
# 4. If refresh_database=False, then .pkl file should not be updated.
# Recalculate hash and compare it with the hash from pt. 1;
# 5. After successful check, the image will be moved back to the original destination;
pkl_path = "dataset/ds_model_vggface_detector_opencv_aligned_normalization_base_expand_0.pkl"
with open(pkl_path, "rb") as f:
hash_before = hashlib.sha256(f.read())
image_name = "img28.jpg"
tmp_dir = "dataset/temp_image"
os.mkdir(tmp_dir)
shutil.move(os.path.join("dataset", image_name), os.path.join(tmp_dir, image_name))
dfs = DeepFace.find(img_path=img_path, db_path="dataset", silent=True, refresh_database=False)
with open(pkl_path, "rb") as f:
hash_after = hashlib.sha256(f.read())
shutil.move(os.path.join(tmp_dir, image_name), os.path.join("dataset", image_name))
os.rmdir(tmp_dir)
assert hash_before.hexdigest() == hash_after.hexdigest()
logger.info("βœ… .pkl hashes before and after the recognition process are the same")
assert len(dfs) > 0
for df in dfs:
assert isinstance(df, pd.DataFrame)
# one is img1.jpg itself
identity_df = df[df["identity"] == img_path]
assert identity_df.shape[0] > 0
# validate reproducability
assert identity_df["distance"].values[0] < threshold
df = df[df["identity"] != img_path]
logger.debug(df.head())
assert df.shape[0] > 0
logger.info("βœ… test find without refresh database done")