Delete main.py
Browse files
main.py
DELETED
@@ -1,119 +0,0 @@
|
|
1 |
-
import face_recognition
|
2 |
-
import numpy as np
|
3 |
-
import pickle
|
4 |
-
from mtcnn import MTCNN
|
5 |
-
from PIL import Image
|
6 |
-
import cv2
|
7 |
-
import faiss
|
8 |
-
import imgaug.augmenters as iaa
|
9 |
-
import os
|
10 |
-
import gradio as gr
|
11 |
-
|
12 |
-
def detect_and_align_face(image_path):
|
13 |
-
detector = MTCNN()
|
14 |
-
image = cv2.imread(image_path)
|
15 |
-
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
16 |
-
detections = detector.detect_faces(image_rgb)
|
17 |
-
|
18 |
-
if len(detections) == 0:
|
19 |
-
raise ValueError("No face detected in the image.")
|
20 |
-
|
21 |
-
detection = detections[0]
|
22 |
-
x, y, width, height = detection['box']
|
23 |
-
keypoints = detection['keypoints']
|
24 |
-
face = image_rgb[y:y+height, x:x+width]
|
25 |
-
|
26 |
-
left_eye = keypoints['left_eye']
|
27 |
-
right_eye = keypoints['right_eye']
|
28 |
-
delta_x = right_eye[0] - left_eye[0]
|
29 |
-
delta_y = right_eye[1] - left_eye[1]
|
30 |
-
angle = np.arctan2(delta_y, delta_x) * (180.0 / np.pi)
|
31 |
-
|
32 |
-
center = ((x + x + width) // 2, (y + y + height) // 2)
|
33 |
-
rot_matrix = cv2.getRotationMatrix2D(center, angle, scale=1.0)
|
34 |
-
aligned_image = cv2.warpAffine(image_rgb, rot_matrix, (image_rgb.shape[1], image_rgb.shape[0]))
|
35 |
-
aligned_face = aligned_image[y:y+height, x:x+width]
|
36 |
-
|
37 |
-
return Image.fromarray(aligned_face)
|
38 |
-
|
39 |
-
def load_encodings(file_path):
|
40 |
-
with open(file_path, "rb") as file:
|
41 |
-
data = pickle.load(file)
|
42 |
-
return np.array(data["encodings"]), data["labels"]
|
43 |
-
|
44 |
-
def save_encodings(encodings, labels, file_path):
|
45 |
-
data = {"encodings": encodings, "labels": labels}
|
46 |
-
with open(file_path, "wb") as file:
|
47 |
-
pickle.dump(data, file)
|
48 |
-
|
49 |
-
def create_faiss_index(known_encodings):
|
50 |
-
dimension = known_encodings.shape[1]
|
51 |
-
index = faiss.IndexFlatL2(dimension)
|
52 |
-
index.add(known_encodings)
|
53 |
-
return index
|
54 |
-
|
55 |
-
def encode_face(image):
|
56 |
-
img_array = np.array(image)
|
57 |
-
encodings = face_recognition.face_encodings(img_array)
|
58 |
-
return encodings[0] if encodings else None
|
59 |
-
|
60 |
-
def augment_image(image, num_augmented=5):
|
61 |
-
image = np.array(image)
|
62 |
-
aug = iaa.Sequential([
|
63 |
-
iaa.Fliplr(0.5), # horizontal flips
|
64 |
-
iaa.Affine(rotate=(-25, 25)), # rotation
|
65 |
-
iaa.AdditiveGaussianNoise(scale=(0, 0.05*255)), # noise
|
66 |
-
iaa.Multiply((0.8, 1.2)), # brightness
|
67 |
-
iaa.GaussianBlur(sigma=(0.0, 1.0)) # blur
|
68 |
-
])
|
69 |
-
augmented_images = [Image.fromarray(aug(image=image)) for _ in range(num_augmented)]
|
70 |
-
return augmented_images
|
71 |
-
|
72 |
-
def update_dataset_with_verified_image(image, encodings_file, label, num_augmented=5):
|
73 |
-
known_encodings, known_labels = load_encodings(encodings_file)
|
74 |
-
augmented_images = augment_image(image, num_augmented=num_augmented)
|
75 |
-
images_to_encode = [image] + augmented_images
|
76 |
-
for img in images_to_encode:
|
77 |
-
img_array = np.array(img)
|
78 |
-
encoding = face_recognition.face_encodings(img_array)[0]
|
79 |
-
known_encodings = np.append(known_encodings, [encoding], axis=0)
|
80 |
-
known_labels.append(label)
|
81 |
-
save_encodings(known_encodings, known_labels, encodings_file)
|
82 |
-
|
83 |
-
def verify_face_with_faiss(image, encodings_file, similarity_threshold=70, num_augmented=5):
|
84 |
-
aligned_face = image.convert("RGB")
|
85 |
-
target_encoding = face_recognition.face_encodings(np.array(aligned_face))[0].reshape(1, -1)
|
86 |
-
|
87 |
-
known_encodings, known_labels = load_encodings(encodings_file)
|
88 |
-
known_encodings = np.array(known_encodings)
|
89 |
-
|
90 |
-
index = create_faiss_index(known_encodings)
|
91 |
-
|
92 |
-
distances, indices = index.search(target_encoding, 1)
|
93 |
-
|
94 |
-
best_match_index = indices[0][0]
|
95 |
-
best_similarity_percentage = (1 - distances[0][0]) * 100
|
96 |
-
|
97 |
-
is_match = best_similarity_percentage >= similarity_threshold
|
98 |
-
|
99 |
-
if is_match:
|
100 |
-
matched_label = known_labels[best_match_index]
|
101 |
-
update_dataset_with_verified_image(image, encodings_file, matched_label, num_augmented=num_augmented)
|
102 |
-
return True, f"Match found: {matched_label}, Similarity: {best_similarity_percentage:.2f}%"
|
103 |
-
else:
|
104 |
-
return False, "No match found."
|
105 |
-
|
106 |
-
# Define the Gradio interface
|
107 |
-
def gradio_interface(image, similarity_threshold=70):
|
108 |
-
encodings_file = "face_encoding.pkl"
|
109 |
-
result, message = verify_face_with_faiss(image, encodings_file, similarity_threshold=similarity_threshold)
|
110 |
-
return message
|
111 |
-
|
112 |
-
# Launch the Gradio interface
|
113 |
-
iface = gr.Interface(fn=gradio_interface,
|
114 |
-
inputs=[gr.Image(type="pil"), gr.Slider(0, 100, value=70, label="Similarity Threshold")],
|
115 |
-
outputs="text",
|
116 |
-
title="Face Recognition with MTCNN and FAISS",
|
117 |
-
description="Upload an image to see if it matches any face in the database.")
|
118 |
-
|
119 |
-
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|