|
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
import cv2
|
|
|
|
|
|
from deepface import DeepFace
|
|
from deepface.modules import verification
|
|
from deepface.models.FacialRecognition import FacialRecognition
|
|
from deepface.commons.logger import Logger
|
|
|
|
logger = Logger()
|
|
|
|
|
|
|
|
|
|
model_name = "VGG-Face"
|
|
|
|
model: FacialRecognition = DeepFace.build_model(task="facial_recognition", model_name=model_name)
|
|
|
|
target_size = model.input_shape
|
|
|
|
logger.info(f"target_size: {target_size}")
|
|
|
|
|
|
|
|
|
|
img1 = DeepFace.extract_faces(img_path="dataset/img1.jpg")[0]["face"]
|
|
img1 = cv2.resize(img1, target_size)
|
|
img1 = np.expand_dims(img1, axis=0)
|
|
img1_representation = model.forward(img1)
|
|
|
|
img2 = DeepFace.extract_faces(img_path="dataset/img3.jpg")[0]["face"]
|
|
img2 = cv2.resize(img2, target_size)
|
|
img2 = np.expand_dims(img2, axis=0)
|
|
img2_representation = model.forward(img2)
|
|
|
|
img1_representation = np.array(img1_representation)
|
|
img2_representation = np.array(img2_representation)
|
|
|
|
|
|
|
|
distance_vector = np.square(img1_representation - img2_representation)
|
|
current_distance = np.sqrt(distance_vector.sum())
|
|
logger.info(f"Euclidean distance: {current_distance}")
|
|
|
|
threshold = verification.find_threshold(model_name=model_name, distance_metric="euclidean")
|
|
logger.info(f"Threshold for {model_name}-euclidean pair is {threshold}")
|
|
|
|
if current_distance < threshold:
|
|
logger.info(
|
|
f"This pair is same person because its distance {current_distance}"
|
|
f" is less than threshold {threshold}"
|
|
)
|
|
else:
|
|
logger.info(
|
|
f"This pair is different persons because its distance {current_distance}"
|
|
f" is greater than threshold {threshold}"
|
|
)
|
|
|
|
|
|
|
|
img1_graph = []
|
|
img2_graph = []
|
|
distance_graph = []
|
|
|
|
for i in range(0, 200):
|
|
img1_graph.append(img1_representation)
|
|
img2_graph.append(img2_representation)
|
|
distance_graph.append(distance_vector)
|
|
|
|
img1_graph = np.array(img1_graph)
|
|
img2_graph = np.array(img2_graph)
|
|
distance_graph = np.array(distance_graph)
|
|
|
|
|
|
|
|
|
|
fig = plt.figure()
|
|
|
|
ax1 = fig.add_subplot(3, 2, 1)
|
|
plt.imshow(img1[0])
|
|
plt.axis("off")
|
|
|
|
ax2 = fig.add_subplot(3, 2, 2)
|
|
im = plt.imshow(img1_graph, interpolation="nearest", cmap=plt.cm.ocean)
|
|
plt.colorbar()
|
|
|
|
ax3 = fig.add_subplot(3, 2, 3)
|
|
plt.imshow(img2[0])
|
|
plt.axis("off")
|
|
|
|
ax4 = fig.add_subplot(3, 2, 4)
|
|
im = plt.imshow(img2_graph, interpolation="nearest", cmap=plt.cm.ocean)
|
|
plt.colorbar()
|
|
|
|
ax5 = fig.add_subplot(3, 2, 5)
|
|
plt.text(0.35, 0, f"Distance: {current_distance}")
|
|
plt.axis("off")
|
|
|
|
ax6 = fig.add_subplot(3, 2, 6)
|
|
im = plt.imshow(distance_graph, interpolation="nearest", cmap=plt.cm.ocean)
|
|
plt.colorbar()
|
|
|
|
plt.show()
|
|
|
|
|
|
|