Spaces:
Sleeping
Sleeping
souravmighty
commited on
Commit
·
86e0637
1
Parent(s):
faa5b0a
add app files
Browse files- .gitignore +3 -0
- Dockerfile +14 -0
- app.py +156 -0
- requirements.txt +8 -0
.gitignore
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
.venv/
|
2 |
+
.env
|
3 |
+
__pycache__
|
Dockerfile
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# read the doc: https://huggingface.co/docs/hub/spaces-sdks-docker
|
2 |
+
# you will also find guides on how best to write your Dockerfile
|
3 |
+
|
4 |
+
FROM python:3.11
|
5 |
+
|
6 |
+
WORKDIR /code
|
7 |
+
|
8 |
+
COPY ./requirements.txt /code/requirements.txt
|
9 |
+
|
10 |
+
RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
|
11 |
+
|
12 |
+
COPY . .
|
13 |
+
|
14 |
+
CMD ["chainlit", "run", "app.py", "--address", "0.0.0.0", "--port", "7860", "--allow-websocket-origin", "souravmighty-groq_doc.hf.space"]
|
app.py
ADDED
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import PyPDF2
|
2 |
+
from langchain_community.embeddings import OllamaEmbeddings
|
3 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
4 |
+
from langchain_community.vectorstores import Chroma
|
5 |
+
from langchain.chains import ConversationalRetrievalChain
|
6 |
+
from langchain_groq import ChatGroq
|
7 |
+
from langchain.memory import ChatMessageHistory, ConversationBufferMemory
|
8 |
+
import chainlit as cl
|
9 |
+
from chainlit.input_widget import Select
|
10 |
+
import os
|
11 |
+
|
12 |
+
|
13 |
+
@cl.cache
|
14 |
+
def get_memory():
|
15 |
+
# Initialize message history for conversation
|
16 |
+
message_history = ChatMessageHistory()
|
17 |
+
|
18 |
+
# Memory for conversational context
|
19 |
+
memory = ConversationBufferMemory(
|
20 |
+
memory_key="chat_history",
|
21 |
+
output_key="answer",
|
22 |
+
chat_memory=message_history,
|
23 |
+
return_messages=True,
|
24 |
+
)
|
25 |
+
return memory
|
26 |
+
|
27 |
+
@cl.on_chat_start
|
28 |
+
async def on_chat_start():
|
29 |
+
|
30 |
+
user_env = cl.user_session.get("env")
|
31 |
+
os.environ["GROQ_API_KEY"] = user_env.get("GROQ_API_KEY")
|
32 |
+
|
33 |
+
settings = await cl.ChatSettings(
|
34 |
+
[
|
35 |
+
Select(
|
36 |
+
id="Model",
|
37 |
+
label="Open Source Model",
|
38 |
+
values=["llama3-8b-8192", "llama3-70b-8192", "mixtral-8x7b-32768", "gemma-7b-it"],
|
39 |
+
initial_index=0,
|
40 |
+
)
|
41 |
+
]
|
42 |
+
).send()
|
43 |
+
|
44 |
+
files = None #Initialize variable to store uploaded files
|
45 |
+
|
46 |
+
# Wait for the user to upload a file
|
47 |
+
while files is None:
|
48 |
+
files = await cl.AskFileMessage(
|
49 |
+
content="Please upload a pdf file to begin!",
|
50 |
+
accept=["application/pdf"],
|
51 |
+
max_size_mb=100,
|
52 |
+
timeout=180,
|
53 |
+
).send()
|
54 |
+
|
55 |
+
file = files[0] # Get the first uploaded file
|
56 |
+
|
57 |
+
# Inform the user that processing has started
|
58 |
+
msg = cl.Message(content=f"Processing `{file.name}`...")
|
59 |
+
await msg.send()
|
60 |
+
|
61 |
+
# Read the PDF file
|
62 |
+
pdf = PyPDF2.PdfReader(file.path)
|
63 |
+
pdf_text = ""
|
64 |
+
for page in pdf.pages:
|
65 |
+
pdf_text += page.extract_text()
|
66 |
+
|
67 |
+
|
68 |
+
# Split the text into chunks
|
69 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
70 |
+
texts = text_splitter.split_text(pdf_text)
|
71 |
+
|
72 |
+
# Create a metadata for each chunk
|
73 |
+
metadatas = [{"source": f"{i}-pl"} for i in range(len(texts))]
|
74 |
+
|
75 |
+
# Create a Chroma vector store
|
76 |
+
embeddings = OllamaEmbeddings(model="nomic-embed-text")
|
77 |
+
#embeddings = OllamaEmbeddings(model="llama2:7b")
|
78 |
+
docsearch = await cl.make_async(Chroma.from_texts)(
|
79 |
+
texts, embeddings, metadatas=metadatas, persist_directory='./chroma_db'
|
80 |
+
)
|
81 |
+
docsearch.persist()
|
82 |
+
|
83 |
+
|
84 |
+
# Let the user know that the system is ready
|
85 |
+
msg.content = f"Processing `{file.name}` done. You can now ask questions!"
|
86 |
+
await msg.update()
|
87 |
+
|
88 |
+
await setup_agent(settings)
|
89 |
+
|
90 |
+
|
91 |
+
@cl.on_settings_update
|
92 |
+
async def setup_agent(settings):
|
93 |
+
print("Setup agent with settings:", settings)
|
94 |
+
|
95 |
+
user_env = cl.user_session.get("env")
|
96 |
+
os.environ["GROQ_API_KEY"] = user_env.get("GROQ_API_KEY")
|
97 |
+
|
98 |
+
embeddings = OllamaEmbeddings(model="nomic-embed-text")
|
99 |
+
memory=get_memory()
|
100 |
+
|
101 |
+
docsearch = await cl.make_async(Chroma)(
|
102 |
+
persist_directory="./chroma_db",
|
103 |
+
embedding_function=embeddings
|
104 |
+
)
|
105 |
+
|
106 |
+
# Create a chain that uses the Chroma vector store
|
107 |
+
chain = ConversationalRetrievalChain.from_llm(
|
108 |
+
llm = ChatGroq(model=settings["Model"]),
|
109 |
+
chain_type="stuff",
|
110 |
+
retriever=docsearch.as_retriever(),
|
111 |
+
memory=memory,
|
112 |
+
return_source_documents=True,
|
113 |
+
)
|
114 |
+
|
115 |
+
#store the chain in user session
|
116 |
+
cl.user_session.set("chain", chain)
|
117 |
+
|
118 |
+
|
119 |
+
@cl.on_message
|
120 |
+
async def main(message: cl.Message):
|
121 |
+
|
122 |
+
# Retrieve the chain from user session
|
123 |
+
chain = cl.user_session.get("chain")
|
124 |
+
#call backs happens asynchronously/parallel
|
125 |
+
cb = cl.AsyncLangchainCallbackHandler()
|
126 |
+
|
127 |
+
user_env = cl.user_session.get("env")
|
128 |
+
os.environ["GROQ_API_KEY"] = user_env.get("GROQ_API_KEY")
|
129 |
+
|
130 |
+
|
131 |
+
print(chain)
|
132 |
+
|
133 |
+
# call the chain with user's message content
|
134 |
+
res = await chain.ainvoke(message.content, callbacks=[cb])
|
135 |
+
answer = res["answer"]
|
136 |
+
source_documents = res["source_documents"]
|
137 |
+
|
138 |
+
text_elements = [] # Initialize list to store text elements
|
139 |
+
|
140 |
+
# Process source documents if available
|
141 |
+
if source_documents:
|
142 |
+
for source_idx, source_doc in enumerate(source_documents):
|
143 |
+
source_name = f"source_{source_idx}"
|
144 |
+
# Create the text element referenced in the message
|
145 |
+
text_elements.append(
|
146 |
+
cl.Text(content=source_doc.page_content, name=source_name)
|
147 |
+
)
|
148 |
+
source_names = [text_el.name for text_el in text_elements]
|
149 |
+
|
150 |
+
# Add source references to the answer
|
151 |
+
if source_names:
|
152 |
+
answer += f"\nSources: {', '.join(source_names)}"
|
153 |
+
else:
|
154 |
+
answer += "\nNo sources found"
|
155 |
+
#return results
|
156 |
+
await cl.Message(content=answer, elements=text_elements).send()
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
chainlit
|
2 |
+
langchain
|
3 |
+
langchain-community
|
4 |
+
PyPDF2
|
5 |
+
chromadb
|
6 |
+
groq
|
7 |
+
langchain-groq
|
8 |
+
ollama
|