File size: 8,901 Bytes
b427b58 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
"""Layers used for up-sampling or down-sampling images.
Many functions are ported from https://github.com/NVlabs/stylegan2.
"""
import torch.nn as nn
import torch
import torch.nn.functional as F
import numpy as np
from .op import upfirdn2d
# Function ported from StyleGAN2
def get_weight(module,
shape,
weight_var='weight',
kernel_init=None):
"""Get/create weight tensor for a convolution or fully-connected layer."""
return module.param(weight_var, kernel_init, shape)
class Conv2d(nn.Module):
"""Conv2d layer with optimal upsampling and downsampling (StyleGAN2)."""
def __init__(self, in_ch, out_ch, kernel, up=False, down=False,
resample_kernel=(1, 3, 3, 1),
use_bias=True,
kernel_init=None):
super().__init__()
assert not (up and down)
assert kernel >= 1 and kernel % 2 == 1
self.weight = nn.Parameter(torch.zeros(out_ch, in_ch, kernel, kernel))
if kernel_init is not None:
self.weight.data = kernel_init(self.weight.data.shape)
if use_bias:
self.bias = nn.Parameter(torch.zeros(out_ch))
self.up = up
self.down = down
self.resample_kernel = resample_kernel
self.kernel = kernel
self.use_bias = use_bias
def forward(self, x):
if self.up:
x = upsample_conv_2d(x, self.weight, k=self.resample_kernel)
elif self.down:
x = conv_downsample_2d(x, self.weight, k=self.resample_kernel)
else:
x = F.conv2d(x, self.weight, stride=1, padding=self.kernel // 2)
if self.use_bias:
x = x + self.bias.reshape(1, -1, 1, 1)
return x
def naive_upsample_2d(x, factor=2):
_N, C, H, W = x.shape
x = torch.reshape(x, (-1, C, H, 1, W, 1))
x = x.repeat(1, 1, 1, factor, 1, factor)
return torch.reshape(x, (-1, C, H * factor, W * factor))
def naive_downsample_2d(x, factor=2):
_N, C, H, W = x.shape
x = torch.reshape(x, (-1, C, H // factor, factor, W // factor, factor))
return torch.mean(x, dim=(3, 5))
def upsample_conv_2d(x, w, k=None, factor=2, gain=1):
"""Fused `upsample_2d()` followed by `tf.nn.conv2d()`.
Padding is performed only once at the beginning, not between the
operations.
The fused op is considerably more efficient than performing the same
calculation
using standard TensorFlow ops. It supports gradients of arbitrary order.
Args:
x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W,
C]`.
w: Weight tensor of the shape `[filterH, filterW, inChannels,
outChannels]`. Grouped convolution can be performed by `inChannels =
x.shape[0] // numGroups`.
k: FIR filter of the shape `[firH, firW]` or `[firN]`
(separable). The default is `[1] * factor`, which corresponds to
nearest-neighbor upsampling.
factor: Integer upsampling factor (default: 2).
gain: Scaling factor for signal magnitude (default: 1.0).
Returns:
Tensor of the shape `[N, C, H * factor, W * factor]` or
`[N, H * factor, W * factor, C]`, and same datatype as `x`.
"""
assert isinstance(factor, int) and factor >= 1
# Check weight shape.
assert len(w.shape) == 4
convH = w.shape[2]
convW = w.shape[3]
inC = w.shape[1]
outC = w.shape[0]
assert convW == convH
# Setup filter kernel.
if k is None:
k = [1] * factor
k = _setup_kernel(k) * (gain * (factor ** 2))
p = (k.shape[0] - factor) - (convW - 1)
stride = (factor, factor)
# Determine data dimensions.
stride = [1, 1, factor, factor]
output_shape = ((_shape(x, 2) - 1) * factor + convH, (_shape(x, 3) - 1) * factor + convW)
output_padding = (output_shape[0] - (_shape(x, 2) - 1) * stride[0] - convH,
output_shape[1] - (_shape(x, 3) - 1) * stride[1] - convW)
assert output_padding[0] >= 0 and output_padding[1] >= 0
num_groups = _shape(x, 1) // inC
# Transpose weights.
w = torch.reshape(w, (num_groups, -1, inC, convH, convW))
w = w[..., ::-1, ::-1].permute(0, 2, 1, 3, 4)
w = torch.reshape(w, (num_groups * inC, -1, convH, convW))
x = F.conv_transpose2d(x, w, stride=stride, output_padding=output_padding, padding=0)
## Original TF code.
# x = tf.nn.conv2d_transpose(
# x,
# w,
# output_shape=output_shape,
# strides=stride,
# padding='VALID',
# data_format=data_format)
## JAX equivalent
return upfirdn2d(x, torch.tensor(k, device=x.device),
pad=((p + 1) // 2 + factor - 1, p // 2 + 1))
def conv_downsample_2d(x, w, k=None, factor=2, gain=1):
"""Fused `tf.nn.conv2d()` followed by `downsample_2d()`.
Padding is performed only once at the beginning, not between the operations.
The fused op is considerably more efficient than performing the same
calculation
using standard TensorFlow ops. It supports gradients of arbitrary order.
Args:
x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W,
C]`.
w: Weight tensor of the shape `[filterH, filterW, inChannels,
outChannels]`. Grouped convolution can be performed by `inChannels =
x.shape[0] // numGroups`.
k: FIR filter of the shape `[firH, firW]` or `[firN]`
(separable). The default is `[1] * factor`, which corresponds to
average pooling.
factor: Integer downsampling factor (default: 2).
gain: Scaling factor for signal magnitude (default: 1.0).
Returns:
Tensor of the shape `[N, C, H // factor, W // factor]` or
`[N, H // factor, W // factor, C]`, and same datatype as `x`.
"""
assert isinstance(factor, int) and factor >= 1
_outC, _inC, convH, convW = w.shape
assert convW == convH
if k is None:
k = [1] * factor
k = _setup_kernel(k) * gain
p = (k.shape[0] - factor) + (convW - 1)
s = [factor, factor]
x = upfirdn2d(x, torch.tensor(k, device=x.device),
pad=((p + 1) // 2, p // 2))
return F.conv2d(x, w, stride=s, padding=0)
def _setup_kernel(k):
k = np.asarray(k, dtype=np.float32)
if k.ndim == 1:
k = np.outer(k, k)
k /= np.sum(k)
assert k.ndim == 2
assert k.shape[0] == k.shape[1]
return k
def _shape(x, dim):
return x.shape[dim]
def upsample_2d(x, k=None, factor=2, gain=1):
r"""Upsample a batch of 2D images with the given filter.
Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]`
and upsamples each image with the given filter. The filter is normalized so
that
if the input pixels are constant, they will be scaled by the specified
`gain`.
Pixels outside the image are assumed to be zero, and the filter is padded
with
zeros so that its shape is a multiple of the upsampling factor.
Args:
x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W,
C]`.
k: FIR filter of the shape `[firH, firW]` or `[firN]`
(separable). The default is `[1] * factor`, which corresponds to
nearest-neighbor upsampling.
factor: Integer upsampling factor (default: 2).
gain: Scaling factor for signal magnitude (default: 1.0).
Returns:
Tensor of the shape `[N, C, H * factor, W * factor]`
"""
assert isinstance(factor, int) and factor >= 1
if k is None:
k = [1] * factor
k = _setup_kernel(k) * (gain * (factor ** 2))
p = k.shape[0] - factor
return upfirdn2d(x, torch.tensor(k, device=x.device),
up=factor, pad=((p + 1) // 2 + factor - 1, p // 2))
def downsample_2d(x, k=None, factor=2, gain=1):
r"""Downsample a batch of 2D images with the given filter.
Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]`
and downsamples each image with the given filter. The filter is normalized
so that
if the input pixels are constant, they will be scaled by the specified
`gain`.
Pixels outside the image are assumed to be zero, and the filter is padded
with
zeros so that its shape is a multiple of the downsampling factor.
Args:
x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W,
C]`.
k: FIR filter of the shape `[firH, firW]` or `[firN]`
(separable). The default is `[1] * factor`, which corresponds to
average pooling.
factor: Integer downsampling factor (default: 2).
gain: Scaling factor for signal magnitude (default: 1.0).
Returns:
Tensor of the shape `[N, C, H // factor, W // factor]`
"""
assert isinstance(factor, int) and factor >= 1
if k is None:
k = [1] * factor
k = _setup_kernel(k) * gain
p = k.shape[0] - factor
return upfirdn2d(x, torch.tensor(k, device=x.device),
down=factor, pad=((p + 1) // 2, p // 2))
|