File size: 22,579 Bytes
b427b58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
# coding=utf-8
# Copyright 2020 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# pylint: skip-file
"""Common layers for defining score networks.
"""
import math
import string
from functools import partial
import torch.nn as nn
import torch
import torch.nn.functional as F
import numpy as np
from .normalization import ConditionalInstanceNorm2dPlus


def get_act(config):
  """Get activation functions from the config file."""

  if config == 'elu':
    return nn.ELU()
  elif config == 'relu':
    return nn.ReLU()
  elif config == 'lrelu':
    return nn.LeakyReLU(negative_slope=0.2)
  elif config == 'swish':
    return nn.SiLU()
  else:
    raise NotImplementedError('activation function does not exist!')


def ncsn_conv1x1(in_planes, out_planes, stride=1, bias=True, dilation=1, init_scale=1., padding=0):
  """1x1 convolution. Same as NCSNv1/v2."""
  conv = nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=bias, dilation=dilation,
                   padding=padding)
  init_scale = 1e-10 if init_scale == 0 else init_scale
  conv.weight.data *= init_scale
  conv.bias.data *= init_scale
  return conv


def variance_scaling(scale, mode, distribution,
                     in_axis=1, out_axis=0,
                     dtype=torch.float32,
                     device='cpu'):
  """Ported from JAX. """

  def _compute_fans(shape, in_axis=1, out_axis=0):
    receptive_field_size = np.prod(shape) / shape[in_axis] / shape[out_axis]
    fan_in = shape[in_axis] * receptive_field_size
    fan_out = shape[out_axis] * receptive_field_size
    return fan_in, fan_out

  def init(shape, dtype=dtype, device=device):
    fan_in, fan_out = _compute_fans(shape, in_axis, out_axis)
    if mode == "fan_in":
      denominator = fan_in
    elif mode == "fan_out":
      denominator = fan_out
    elif mode == "fan_avg":
      denominator = (fan_in + fan_out) / 2
    else:
      raise ValueError(
        "invalid mode for variance scaling initializer: {}".format(mode))
    variance = scale / denominator
    if distribution == "normal":
      return torch.randn(*shape, dtype=dtype, device=device) * np.sqrt(variance)
    elif distribution == "uniform":
      return (torch.rand(*shape, dtype=dtype, device=device) * 2. - 1.) * np.sqrt(3 * variance)
    else:
      raise ValueError("invalid distribution for variance scaling initializer")

  return init


def default_init(scale=1.):
  """The same initialization used in DDPM."""
  scale = 1e-10 if scale == 0 else scale
  return variance_scaling(scale, 'fan_avg', 'uniform')


class Dense(nn.Module):
  """Linear layer with `default_init`."""
  def __init__(self):
    super().__init__()


def ddpm_conv1x1(in_planes, out_planes, stride=1, bias=True, init_scale=1., padding=0):
  """1x1 convolution with DDPM initialization."""
  conv = nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, padding=padding, bias=bias)
  conv.weight.data = default_init(init_scale)(conv.weight.data.shape)
  nn.init.zeros_(conv.bias)
  return conv


def ncsn_conv3x3(in_planes, out_planes, stride=1, bias=True, dilation=1, init_scale=1., padding=1):
  """3x3 convolution with PyTorch initialization. Same as NCSNv1/NCSNv2."""
  init_scale = 1e-10 if init_scale == 0 else init_scale
  conv = nn.Conv2d(in_planes, out_planes, stride=stride, bias=bias,
                   dilation=dilation, padding=padding, kernel_size=3)
  conv.weight.data *= init_scale
  conv.bias.data *= init_scale
  return conv


def ddpm_conv3x3(in_planes, out_planes, stride=1, bias=True, dilation=1, init_scale=1., padding=1):
  """3x3 convolution with DDPM initialization."""
  conv = nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=padding,
                   dilation=dilation, bias=bias)
  conv.weight.data = default_init(init_scale)(conv.weight.data.shape)
  nn.init.zeros_(conv.bias)
  return conv

  ###########################################################################
  # Functions below are ported over from the NCSNv1/NCSNv2 codebase:
  # https://github.com/ermongroup/ncsn
  # https://github.com/ermongroup/ncsnv2
  ###########################################################################


class CRPBlock(nn.Module):
  def __init__(self, features, n_stages, act=nn.ReLU(), maxpool=True):
    super().__init__()
    self.convs = nn.ModuleList()
    for i in range(n_stages):
      self.convs.append(ncsn_conv3x3(features, features, stride=1, bias=False))
    self.n_stages = n_stages
    if maxpool:
      self.pool = nn.MaxPool2d(kernel_size=5, stride=1, padding=2)
    else:
      self.pool = nn.AvgPool2d(kernel_size=5, stride=1, padding=2)

    self.act = act

  def forward(self, x):
    x = self.act(x)
    path = x
    for i in range(self.n_stages):
      path = self.pool(path)
      path = self.convs[i](path)
      x = path + x
    return x


class CondCRPBlock(nn.Module):
  def __init__(self, features, n_stages, num_classes, normalizer, act=nn.ReLU()):
    super().__init__()
    self.convs = nn.ModuleList()
    self.norms = nn.ModuleList()
    self.normalizer = normalizer
    for i in range(n_stages):
      self.norms.append(normalizer(features, num_classes, bias=True))
      self.convs.append(ncsn_conv3x3(features, features, stride=1, bias=False))

    self.n_stages = n_stages
    self.pool = nn.AvgPool2d(kernel_size=5, stride=1, padding=2)
    self.act = act

  def forward(self, x, y):
    x = self.act(x)
    path = x
    for i in range(self.n_stages):
      path = self.norms[i](path, y)
      path = self.pool(path)
      path = self.convs[i](path)

      x = path + x
    return x


class RCUBlock(nn.Module):
  def __init__(self, features, n_blocks, n_stages, act=nn.ReLU()):
    super().__init__()

    for i in range(n_blocks):
      for j in range(n_stages):
        setattr(self, '{}_{}_conv'.format(i + 1, j + 1), ncsn_conv3x3(features, features, stride=1, bias=False))

    self.stride = 1
    self.n_blocks = n_blocks
    self.n_stages = n_stages
    self.act = act

  def forward(self, x):
    for i in range(self.n_blocks):
      residual = x
      for j in range(self.n_stages):
        x = self.act(x)
        x = getattr(self, '{}_{}_conv'.format(i + 1, j + 1))(x)

      x += residual
    return x


class CondRCUBlock(nn.Module):
  def __init__(self, features, n_blocks, n_stages, num_classes, normalizer, act=nn.ReLU()):
    super().__init__()

    for i in range(n_blocks):
      for j in range(n_stages):
        setattr(self, '{}_{}_norm'.format(i + 1, j + 1), normalizer(features, num_classes, bias=True))
        setattr(self, '{}_{}_conv'.format(i + 1, j + 1), ncsn_conv3x3(features, features, stride=1, bias=False))

    self.stride = 1
    self.n_blocks = n_blocks
    self.n_stages = n_stages
    self.act = act
    self.normalizer = normalizer

  def forward(self, x, y):
    for i in range(self.n_blocks):
      residual = x
      for j in range(self.n_stages):
        x = getattr(self, '{}_{}_norm'.format(i + 1, j + 1))(x, y)
        x = self.act(x)
        x = getattr(self, '{}_{}_conv'.format(i + 1, j + 1))(x)

      x += residual
    return x


class MSFBlock(nn.Module):
  def __init__(self, in_planes, features):
    super().__init__()
    assert isinstance(in_planes, list) or isinstance(in_planes, tuple)
    self.convs = nn.ModuleList()
    self.features = features

    for i in range(len(in_planes)):
      self.convs.append(ncsn_conv3x3(in_planes[i], features, stride=1, bias=True))

  def forward(self, xs, shape):
    sums = torch.zeros(xs[0].shape[0], self.features, *shape, device=xs[0].device)
    for i in range(len(self.convs)):
      h = self.convs[i](xs[i])
      h = F.interpolate(h, size=shape, mode='bilinear', align_corners=True)
      sums += h
    return sums


class CondMSFBlock(nn.Module):
  def __init__(self, in_planes, features, num_classes, normalizer):
    super().__init__()
    assert isinstance(in_planes, list) or isinstance(in_planes, tuple)

    self.convs = nn.ModuleList()
    self.norms = nn.ModuleList()
    self.features = features
    self.normalizer = normalizer

    for i in range(len(in_planes)):
      self.convs.append(ncsn_conv3x3(in_planes[i], features, stride=1, bias=True))
      self.norms.append(normalizer(in_planes[i], num_classes, bias=True))

  def forward(self, xs, y, shape):
    sums = torch.zeros(xs[0].shape[0], self.features, *shape, device=xs[0].device)
    for i in range(len(self.convs)):
      h = self.norms[i](xs[i], y)
      h = self.convs[i](h)
      h = F.interpolate(h, size=shape, mode='bilinear', align_corners=True)
      sums += h
    return sums


class RefineBlock(nn.Module):
  def __init__(self, in_planes, features, act=nn.ReLU(), start=False, end=False, maxpool=True):
    super().__init__()

    assert isinstance(in_planes, tuple) or isinstance(in_planes, list)
    self.n_blocks = n_blocks = len(in_planes)

    self.adapt_convs = nn.ModuleList()
    for i in range(n_blocks):
      self.adapt_convs.append(RCUBlock(in_planes[i], 2, 2, act))

    self.output_convs = RCUBlock(features, 3 if end else 1, 2, act)

    if not start:
      self.msf = MSFBlock(in_planes, features)

    self.crp = CRPBlock(features, 2, act, maxpool=maxpool)

  def forward(self, xs, output_shape):
    assert isinstance(xs, tuple) or isinstance(xs, list)
    hs = []
    for i in range(len(xs)):
      h = self.adapt_convs[i](xs[i])
      hs.append(h)

    if self.n_blocks > 1:
      h = self.msf(hs, output_shape)
    else:
      h = hs[0]

    h = self.crp(h)
    h = self.output_convs(h)

    return h


class CondRefineBlock(nn.Module):
  def __init__(self, in_planes, features, num_classes, normalizer, act=nn.ReLU(), start=False, end=False):
    super().__init__()

    assert isinstance(in_planes, tuple) or isinstance(in_planes, list)
    self.n_blocks = n_blocks = len(in_planes)

    self.adapt_convs = nn.ModuleList()
    for i in range(n_blocks):
      self.adapt_convs.append(
        CondRCUBlock(in_planes[i], 2, 2, num_classes, normalizer, act)
      )

    self.output_convs = CondRCUBlock(features, 3 if end else 1, 2, num_classes, normalizer, act)

    if not start:
      self.msf = CondMSFBlock(in_planes, features, num_classes, normalizer)

    self.crp = CondCRPBlock(features, 2, num_classes, normalizer, act)

  def forward(self, xs, y, output_shape):
    assert isinstance(xs, tuple) or isinstance(xs, list)
    hs = []
    for i in range(len(xs)):
      h = self.adapt_convs[i](xs[i], y)
      hs.append(h)

    if self.n_blocks > 1:
      h = self.msf(hs, y, output_shape)
    else:
      h = hs[0]

    h = self.crp(h, y)
    h = self.output_convs(h, y)

    return h


class ConvMeanPool(nn.Module):
  def __init__(self, input_dim, output_dim, kernel_size=3, biases=True, adjust_padding=False):
    super().__init__()
    if not adjust_padding:
      conv = nn.Conv2d(input_dim, output_dim, kernel_size, stride=1, padding=kernel_size // 2, bias=biases)
      self.conv = conv
    else:
      conv = nn.Conv2d(input_dim, output_dim, kernel_size, stride=1, padding=kernel_size // 2, bias=biases)

      self.conv = nn.Sequential(
        nn.ZeroPad2d((1, 0, 1, 0)),
        conv
      )

  def forward(self, inputs):
    output = self.conv(inputs)
    output = sum([output[:, :, ::2, ::2], output[:, :, 1::2, ::2],
                  output[:, :, ::2, 1::2], output[:, :, 1::2, 1::2]]) / 4.
    return output


class MeanPoolConv(nn.Module):
  def __init__(self, input_dim, output_dim, kernel_size=3, biases=True):
    super().__init__()
    self.conv = nn.Conv2d(input_dim, output_dim, kernel_size, stride=1, padding=kernel_size // 2, bias=biases)

  def forward(self, inputs):
    output = inputs
    output = sum([output[:, :, ::2, ::2], output[:, :, 1::2, ::2],
                  output[:, :, ::2, 1::2], output[:, :, 1::2, 1::2]]) / 4.
    return self.conv(output)


class UpsampleConv(nn.Module):
  def __init__(self, input_dim, output_dim, kernel_size=3, biases=True):
    super().__init__()
    self.conv = nn.Conv2d(input_dim, output_dim, kernel_size, stride=1, padding=kernel_size // 2, bias=biases)
    self.pixelshuffle = nn.PixelShuffle(upscale_factor=2)

  def forward(self, inputs):
    output = inputs
    output = torch.cat([output, output, output, output], dim=1)
    output = self.pixelshuffle(output)
    return self.conv(output)


class ConditionalResidualBlock(nn.Module):
  def __init__(self, input_dim, output_dim, num_classes, resample=1, act=nn.ELU(),
               normalization=ConditionalInstanceNorm2dPlus, adjust_padding=False, dilation=None):
    super().__init__()
    self.non_linearity = act
    self.input_dim = input_dim
    self.output_dim = output_dim
    self.resample = resample
    self.normalization = normalization
    if resample == 'down':
      if dilation > 1:
        self.conv1 = ncsn_conv3x3(input_dim, input_dim, dilation=dilation)
        self.normalize2 = normalization(input_dim, num_classes)
        self.conv2 = ncsn_conv3x3(input_dim, output_dim, dilation=dilation)
        conv_shortcut = partial(ncsn_conv3x3, dilation=dilation)
      else:
        self.conv1 = ncsn_conv3x3(input_dim, input_dim)
        self.normalize2 = normalization(input_dim, num_classes)
        self.conv2 = ConvMeanPool(input_dim, output_dim, 3, adjust_padding=adjust_padding)
        conv_shortcut = partial(ConvMeanPool, kernel_size=1, adjust_padding=adjust_padding)

    elif resample is None:
      if dilation > 1:
        conv_shortcut = partial(ncsn_conv3x3, dilation=dilation)
        self.conv1 = ncsn_conv3x3(input_dim, output_dim, dilation=dilation)
        self.normalize2 = normalization(output_dim, num_classes)
        self.conv2 = ncsn_conv3x3(output_dim, output_dim, dilation=dilation)
      else:
        conv_shortcut = nn.Conv2d
        self.conv1 = ncsn_conv3x3(input_dim, output_dim)
        self.normalize2 = normalization(output_dim, num_classes)
        self.conv2 = ncsn_conv3x3(output_dim, output_dim)
    else:
      raise Exception('invalid resample value')

    if output_dim != input_dim or resample is not None:
      self.shortcut = conv_shortcut(input_dim, output_dim)

    self.normalize1 = normalization(input_dim, num_classes)

  def forward(self, x, y):
    output = self.normalize1(x, y)
    output = self.non_linearity(output)
    output = self.conv1(output)
    output = self.normalize2(output, y)
    output = self.non_linearity(output)
    output = self.conv2(output)

    if self.output_dim == self.input_dim and self.resample is None:
      shortcut = x
    else:
      shortcut = self.shortcut(x)

    return shortcut + output


class ResidualBlock(nn.Module):
  def __init__(self, input_dim, output_dim, resample=None, act=nn.ELU(),
               normalization=nn.InstanceNorm2d, adjust_padding=False, dilation=1):
    super().__init__()
    self.non_linearity = act
    self.input_dim = input_dim
    self.output_dim = output_dim
    self.resample = resample
    self.normalization = normalization
    if resample == 'down':
      if dilation > 1:
        self.conv1 = ncsn_conv3x3(input_dim, input_dim, dilation=dilation)
        self.normalize2 = normalization(input_dim)
        self.conv2 = ncsn_conv3x3(input_dim, output_dim, dilation=dilation)
        conv_shortcut = partial(ncsn_conv3x3, dilation=dilation)
      else:
        self.conv1 = ncsn_conv3x3(input_dim, input_dim)
        self.normalize2 = normalization(input_dim)
        self.conv2 = ConvMeanPool(input_dim, output_dim, 3, adjust_padding=adjust_padding)
        conv_shortcut = partial(ConvMeanPool, kernel_size=1, adjust_padding=adjust_padding)

    elif resample is None:
      if dilation > 1:
        conv_shortcut = partial(ncsn_conv3x3, dilation=dilation)
        self.conv1 = ncsn_conv3x3(input_dim, output_dim, dilation=dilation)
        self.normalize2 = normalization(output_dim)
        self.conv2 = ncsn_conv3x3(output_dim, output_dim, dilation=dilation)
      else:
        # conv_shortcut = nn.Conv2d ### Something wierd here.
        conv_shortcut = partial(ncsn_conv1x1)
        self.conv1 = ncsn_conv3x3(input_dim, output_dim)
        self.normalize2 = normalization(output_dim)
        self.conv2 = ncsn_conv3x3(output_dim, output_dim)
    else:
      raise Exception('invalid resample value')

    if output_dim != input_dim or resample is not None:
      self.shortcut = conv_shortcut(input_dim, output_dim)

    self.normalize1 = normalization(input_dim)

  def forward(self, x):
    output = self.normalize1(x)
    output = self.non_linearity(output)
    output = self.conv1(output)
    output = self.normalize2(output)
    output = self.non_linearity(output)
    output = self.conv2(output)

    if self.output_dim == self.input_dim and self.resample is None:
      shortcut = x
    else:
      shortcut = self.shortcut(x)

    return shortcut + output


###########################################################################
# Functions below are ported over from the DDPM codebase:
#  https://github.com/hojonathanho/diffusion/blob/master/diffusion_tf/nn.py
###########################################################################

def get_timestep_embedding(timesteps, embedding_dim, max_positions=10000):
  assert len(timesteps.shape) == 1  # and timesteps.dtype == tf.int32
  half_dim = embedding_dim // 2
  # magic number 10000 is from transformers
  emb = math.log(max_positions) / (half_dim - 1)
  # emb = math.log(2.) / (half_dim - 1)
  emb = torch.exp(torch.arange(half_dim, dtype=torch.float32, device=timesteps.device) * -emb)
  # emb = tf.range(num_embeddings, dtype=jnp.float32)[:, None] * emb[None, :]
  # emb = tf.cast(timesteps, dtype=jnp.float32)[:, None] * emb[None, :]
  emb = timesteps.float()[:, None] * emb[None, :]
  emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
  if embedding_dim % 2 == 1:  # zero pad
    emb = F.pad(emb, (0, 1), mode='constant')
  assert emb.shape == (timesteps.shape[0], embedding_dim)
  return emb


def _einsum(a, b, c, x, y):
  einsum_str = '{},{}->{}'.format(''.join(a), ''.join(b), ''.join(c))
  return torch.einsum(einsum_str, x, y)


def contract_inner(x, y):
  """tensordot(x, y, 1)."""
  x_chars = list(string.ascii_lowercase[:len(x.shape)])
  y_chars = list(string.ascii_lowercase[len(x.shape):len(y.shape) + len(x.shape)])
  y_chars[0] = x_chars[-1]  # first axis of y and last of x get summed
  out_chars = x_chars[:-1] + y_chars[1:]
  return _einsum(x_chars, y_chars, out_chars, x, y)


class NIN(nn.Module):
  def __init__(self, in_dim, num_units, init_scale=0.1):
    super().__init__()
    self.W = nn.Parameter(default_init(scale=init_scale)((in_dim, num_units)), requires_grad=True)
    self.b = nn.Parameter(torch.zeros(num_units), requires_grad=True)

  def forward(self, x):
    x = x.permute(0, 2, 3, 1)
    y = contract_inner(x, self.W) + self.b
    return y.permute(0, 3, 1, 2)


class AttnBlock(nn.Module):
  """Channel-wise self-attention block."""
  def __init__(self, channels):
    super().__init__()
    self.GroupNorm_0 = nn.GroupNorm(num_groups=32, num_channels=channels, eps=1e-6)
    self.NIN_0 = NIN(channels, channels)
    self.NIN_1 = NIN(channels, channels)
    self.NIN_2 = NIN(channels, channels)
    self.NIN_3 = NIN(channels, channels, init_scale=0.)

  def forward(self, x):
    B, C, H, W = x.shape
    h = self.GroupNorm_0(x)
    q = self.NIN_0(h)
    k = self.NIN_1(h)
    v = self.NIN_2(h)

    w = torch.einsum('bchw,bcij->bhwij', q, k) * (int(C) ** (-0.5))
    w = torch.reshape(w, (B, H, W, H * W))
    w = F.softmax(w, dim=-1)
    w = torch.reshape(w, (B, H, W, H, W))
    h = torch.einsum('bhwij,bcij->bchw', w, v)
    h = self.NIN_3(h)
    return x + h


class Upsample(nn.Module):
  def __init__(self, channels, with_conv=False):
    super().__init__()
    if with_conv:
      self.Conv_0 = ddpm_conv3x3(channels, channels)
    self.with_conv = with_conv

  def forward(self, x):
    B, C, H, W = x.shape
    h = F.interpolate(x, (H * 2, W * 2), mode='nearest')
    if self.with_conv:
      h = self.Conv_0(h)
    return h


class Downsample(nn.Module):
  def __init__(self, channels, with_conv=False):
    super().__init__()
    if with_conv:
      self.Conv_0 = ddpm_conv3x3(channels, channels, stride=2, padding=0)
    self.with_conv = with_conv

  def forward(self, x):
    B, C, H, W = x.shape
    # Emulate 'SAME' padding
    if self.with_conv:
      x = F.pad(x, (0, 1, 0, 1))
      x = self.Conv_0(x)
    else:
      x = F.avg_pool2d(x, kernel_size=2, stride=2, padding=0)

    assert x.shape == (B, C, H // 2, W // 2)
    return x


class ResnetBlockDDPM(nn.Module):
  """The ResNet Blocks used in DDPM."""
  def __init__(self, act, in_ch, out_ch=None, temb_dim=None, conv_shortcut=False, dropout=0.1):
    super().__init__()
    if out_ch is None:
      out_ch = in_ch
    self.GroupNorm_0 = nn.GroupNorm(num_groups=32, num_channels=in_ch, eps=1e-6)
    self.act = act
    self.Conv_0 = ddpm_conv3x3(in_ch, out_ch)
    if temb_dim is not None:
      self.Dense_0 = nn.Linear(temb_dim, out_ch)
      self.Dense_0.weight.data = default_init()(self.Dense_0.weight.data.shape)
      nn.init.zeros_(self.Dense_0.bias)

    self.GroupNorm_1 = nn.GroupNorm(num_groups=32, num_channels=out_ch, eps=1e-6)
    self.Dropout_0 = nn.Dropout(dropout)
    self.Conv_1 = ddpm_conv3x3(out_ch, out_ch, init_scale=0.)
    if in_ch != out_ch:
      if conv_shortcut:
        self.Conv_2 = ddpm_conv3x3(in_ch, out_ch)
      else:
        self.NIN_0 = NIN(in_ch, out_ch)
    self.out_ch = out_ch
    self.in_ch = in_ch
    self.conv_shortcut = conv_shortcut

  def forward(self, x, temb=None):
    B, C, H, W = x.shape
    assert C == self.in_ch
    out_ch = self.out_ch if self.out_ch else self.in_ch
    h = self.act(self.GroupNorm_0(x))
    h = self.Conv_0(h)
    # Add bias to each feature map conditioned on the time embedding
    if temb is not None:
      h += self.Dense_0(self.act(temb))[:, :, None, None]
    h = self.act(self.GroupNorm_1(h))
    h = self.Dropout_0(h)
    h = self.Conv_1(h)
    if C != out_ch:
      if self.conv_shortcut:
        x = self.Conv_2(x)
      else:
        x = self.NIN_0(x)
    return x + h