File size: 5,608 Bytes
b427b58 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
# coding=utf-8
# Copyright 2020 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""All functions and modules related to model definition.
"""
import torch
import numpy as np
from ...sdes import OUVESDE, OUVPSDE
_MODELS = {}
def register_model(cls=None, *, name=None):
"""A decorator for registering model classes."""
def _register(cls):
if name is None:
local_name = cls.__name__
else:
local_name = name
if local_name in _MODELS:
raise ValueError(f'Already registered model with name: {local_name}')
_MODELS[local_name] = cls
return cls
if cls is None:
return _register
else:
return _register(cls)
def get_model(name):
return _MODELS[name]
def get_sigmas(sigma_min, sigma_max, num_scales):
"""Get sigmas --- the set of noise levels for SMLD from config files.
Args:
config: A ConfigDict object parsed from the config file
Returns:
sigmas: a jax numpy arrary of noise levels
"""
sigmas = np.exp(
np.linspace(np.log(sigma_max), np.log(sigma_min), num_scales))
return sigmas
def get_ddpm_params(config):
"""Get betas and alphas --- parameters used in the original DDPM paper."""
num_diffusion_timesteps = 1000
# parameters need to be adapted if number of time steps differs from 1000
beta_start = config.model.beta_min / config.model.num_scales
beta_end = config.model.beta_max / config.model.num_scales
betas = np.linspace(beta_start, beta_end, num_diffusion_timesteps, dtype=np.float64)
alphas = 1. - betas
alphas_cumprod = np.cumprod(alphas, axis=0)
sqrt_alphas_cumprod = np.sqrt(alphas_cumprod)
sqrt_1m_alphas_cumprod = np.sqrt(1. - alphas_cumprod)
return {
'betas': betas,
'alphas': alphas,
'alphas_cumprod': alphas_cumprod,
'sqrt_alphas_cumprod': sqrt_alphas_cumprod,
'sqrt_1m_alphas_cumprod': sqrt_1m_alphas_cumprod,
'beta_min': beta_start * (num_diffusion_timesteps - 1),
'beta_max': beta_end * (num_diffusion_timesteps - 1),
'num_diffusion_timesteps': num_diffusion_timesteps
}
def create_model(config):
"""Create the score model."""
model_name = config.model.name
score_model = get_model(model_name)(config)
score_model = score_model.to(config.device)
score_model = torch.nn.DataParallel(score_model)
return score_model
def get_model_fn(model, train=False):
"""Create a function to give the output of the score-based model.
Args:
model: The score model.
train: `True` for training and `False` for evaluation.
Returns:
A model function.
"""
def model_fn(x, labels):
"""Compute the output of the score-based model.
Args:
x: A mini-batch of input data.
labels: A mini-batch of conditioning variables for time steps. Should be interpreted differently
for different models.
Returns:
A tuple of (model output, new mutable states)
"""
if not train:
model.eval()
return model(x, labels)
else:
model.train()
return model(x, labels)
return model_fn
def get_score_fn(sde, model, train=False, continuous=False):
"""Wraps `score_fn` so that the model output corresponds to a real time-dependent score function.
Args:
sde: An `sde_lib.SDE` object that represents the forward SDE.
model: A score model.
train: `True` for training and `False` for evaluation.
continuous: If `True`, the score-based model is expected to directly take continuous time steps.
Returns:
A score function.
"""
model_fn = get_model_fn(model, train=train)
if isinstance(sde, OUVPSDE):
def score_fn(x, t):
# Scale neural network output by standard deviation and flip sign
if continuous:
# For VP-trained models, t=0 corresponds to the lowest noise level
# The maximum value of time embedding is assumed to 999 for
# continuously-trained models.
labels = t * 999
score = model_fn(x, labels)
std = sde.marginal_prob(torch.zeros_like(x), t)[1]
else:
# For VP-trained models, t=0 corresponds to the lowest noise level
labels = t * (sde.N - 1)
score = model_fn(x, labels)
std = sde.sqrt_1m_alphas_cumprod.to(labels.device)[labels.long()]
score = -score / std[:, None, None, None]
return score
elif isinstance(sde, OUVESDE):
def score_fn(x, t):
if continuous:
labels = sde.marginal_prob(torch.zeros_like(x), t)[1]
else:
# For VE-trained models, t=0 corresponds to the highest noise level
labels = sde.T - t
labels *= sde.N - 1
labels = torch.round(labels).long()
score = model_fn(x, labels)
return score
else:
raise NotImplementedError(f"SDE class {sde.__class__.__name__} not yet supported.")
return score_fn
def to_flattened_numpy(x):
"""Flatten a torch tensor `x` and convert it to numpy."""
return x.detach().cpu().numpy().reshape((-1,))
def from_flattened_numpy(x, shape):
"""Form a torch tensor with the given `shape` from a flattened numpy array `x`."""
return torch.from_numpy(x.reshape(shape)) |