|
import torch |
|
import torchaudio |
|
from sgmse.model import ScoreModel |
|
import gradio as gr |
|
from sgmse.util.other import pad_spec |
|
import time |
|
|
|
|
|
args = { |
|
"test_dir": "./test_data", |
|
"enhanced_dir": "./enhanced_data", |
|
"ckpt": "https://huggingface.co/sp-uhh/speech-enhancement-sgmse/resolve/main/train_vb_29nqe0uh_epoch%3D115.ckpt", |
|
"corrector": "ald", |
|
"corrector_steps": 1, |
|
"snr": 0.5, |
|
"N": 30, |
|
"device": "cuda" if torch.cuda.is_available() else "cpu" |
|
} |
|
|
|
|
|
model = ScoreModel.load_from_checkpoint(args["ckpt"]) |
|
|
|
def enhance_speech(audio_file): |
|
start_time = time.time() |
|
|
|
|
|
y, sr = torchaudio.load(audio_file) |
|
print(f"Loaded audio in {time.time() - start_time:.2f}s") |
|
T_orig = y.size(1) |
|
|
|
|
|
norm_factor = y.abs().max() |
|
y = y / norm_factor |
|
|
|
|
|
Y = torch.unsqueeze(model._forward_transform(model._stft(y.to(args["device"]))), 0) |
|
print(f"Transformed input in {time.time() - start_time:.2f}s") |
|
|
|
Y = pad_spec(Y, mode="zero_pad") |
|
|
|
|
|
sampler = model.get_pc_sampler( |
|
'reverse_diffusion', args["corrector"], Y.to(args["device"]), |
|
N=args["N"], corrector_steps=args["corrector_steps"], snr=args["snr"] |
|
) |
|
sample, _ = sampler() |
|
|
|
|
|
x_hat = model.to_audio(sample.squeeze(), T_orig) |
|
|
|
|
|
x_hat = x_hat * norm_factor |
|
|
|
|
|
output_file = 'enhanced_output.wav' |
|
torchaudio.save(output_file, x_hat.cpu(), sr) |
|
|
|
print(f"Processed audio in {time.time() - start_time:.2f}s") |
|
return output_file |
|
|
|
|
|
inputs = gr.Audio(label="Input Audio", type="filepath") |
|
outputs = gr.Audio(label="Output Audio", type="filepath") |
|
title = "Speech Enhancement using SGMSE" |
|
description = "This Gradio demo uses the SGMSE model for speech enhancement. Upload your audio file to enhance it." |
|
article = "<p style='text-align: center'><a href='https://huggingface.co/SP-UHH/speech-enhancement-sgmse' target='_blank'>Model Card</a></p>" |
|
|
|
|
|
gr.Interface(fn=enhance_speech, inputs=inputs, outputs=outputs, title=title, description=description, article=article).launch() |
|
|