Spaces:
Building
on
CPU Upgrade
Building
on
CPU Upgrade
Add GPT-4 & human eval tab
Browse files- .gitignore +4 -0
- app.py +255 -99
- content.py +26 -1
- elo_utils.py +175 -0
- utils.py +4 -20
- visualizations.py +137 -0
.gitignore
CHANGED
@@ -4,3 +4,7 @@ __pycache__/
|
|
4 |
.env
|
5 |
.ipynb_checkpoints
|
6 |
*ipynb
|
|
|
|
|
|
|
|
|
|
4 |
.env
|
5 |
.ipynb_checkpoints
|
6 |
*ipynb
|
7 |
+
|
8 |
+
gpt_4_evals/
|
9 |
+
human_evals/
|
10 |
+
model_counts.html
|
app.py
CHANGED
@@ -1,20 +1,24 @@
|
|
1 |
-
import os
|
2 |
import json
|
|
|
3 |
from datetime import datetime, timezone
|
4 |
|
5 |
-
|
6 |
import gradio as gr
|
|
|
7 |
import pandas as pd
|
8 |
-
|
9 |
from apscheduler.schedulers.background import BackgroundScheduler
|
10 |
-
from
|
11 |
-
from huggingface_hub import Repository, HfApi
|
12 |
from transformers import AutoConfig
|
|
|
|
|
|
|
13 |
from utils import get_eval_results_dicts, make_clickable_model
|
14 |
|
15 |
# clone / pull the lmeh eval data
|
16 |
H4_TOKEN = os.environ.get("H4_TOKEN", None)
|
17 |
LMEH_REPO = "HuggingFaceH4/lmeh_evaluations"
|
|
|
|
|
18 |
IS_PUBLIC = bool(os.environ.get("IS_PUBLIC", None))
|
19 |
|
20 |
api = HfApi()
|
@@ -56,6 +60,27 @@ if H4_TOKEN:
|
|
56 |
requested_models_dir = "./evals/eval_requests"
|
57 |
requested_models = get_all_requested_models(requested_models_dir)
|
58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
# parse the results
|
61 |
BENCHMARKS = ["arc_challenge", "hellaswag", "hendrycks", "truthfulqa_mc"]
|
@@ -100,6 +125,16 @@ BENCHMARK_COLS = [
|
|
100 |
"TruthfulQA (0-shot) ⬆️",
|
101 |
]
|
102 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
def has_no_nan_values(df, columns):
|
105 |
return df[columns].notna().all(axis=1)
|
@@ -213,6 +248,42 @@ def get_evaluation_queue_df():
|
|
213 |
return df_finished[EVAL_COLS], df_running[EVAL_COLS], df_pending[EVAL_COLS]
|
214 |
|
215 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
216 |
original_df = get_leaderboard_df()
|
217 |
leaderboard_df = original_df.copy()
|
218 |
(
|
@@ -220,6 +291,14 @@ leaderboard_df = original_df.copy()
|
|
220 |
running_eval_queue_df,
|
221 |
pending_eval_queue_df,
|
222 |
) = get_evaluation_queue_df()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
223 |
|
224 |
|
225 |
def is_model_on_hub(model_name, revision) -> bool:
|
@@ -359,12 +438,11 @@ custom_css = """
|
|
359 |
}
|
360 |
|
361 |
/* Hides the final column */
|
362 |
-
table td:last-child,
|
363 |
-
table th:last-child {
|
364 |
display: none;
|
365 |
}
|
366 |
|
367 |
-
|
368 |
/* Limit the width of the first column so that names don't expand too much */
|
369 |
table td:first-child,
|
370 |
table th:first-child {
|
@@ -373,13 +451,30 @@ table th:first-child {
|
|
373 |
white-space: nowrap;
|
374 |
}
|
375 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
376 |
"""
|
377 |
|
378 |
|
379 |
demo = gr.Blocks(css=custom_css)
|
380 |
with demo:
|
381 |
gr.HTML(TITLE)
|
382 |
-
gr.
|
|
|
383 |
|
384 |
with gr.Row():
|
385 |
with gr.Column():
|
@@ -393,97 +488,158 @@ with demo:
|
|
393 |
with gr.Accordion("✨ CHANGELOG", open=False):
|
394 |
changelog = gr.Markdown(CHANGELOG_TEXT, elem_id="changelog-text")
|
395 |
|
396 |
-
with gr.
|
397 |
-
|
398 |
-
placeholder="🔍 Search your model and press ENTER...",
|
399 |
-
show_label=False,
|
400 |
-
elem_id="search-bar",
|
401 |
-
)
|
402 |
-
|
403 |
-
leaderboard_table = gr.components.Dataframe(
|
404 |
-
value=leaderboard_df,
|
405 |
-
headers=COLS,
|
406 |
-
datatype=TYPES,
|
407 |
-
max_rows=5,
|
408 |
-
elem_id="leaderboard-table",
|
409 |
-
)
|
410 |
-
|
411 |
-
# Dummy leaderboard for handling the case when the user uses backspace key
|
412 |
-
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
413 |
-
value=original_df, headers=COLS, datatype=TYPES, max_rows=5, visible=False
|
414 |
-
)
|
415 |
-
|
416 |
-
search_bar.submit(
|
417 |
-
search_table,
|
418 |
-
[hidden_leaderboard_table_for_search, search_bar],
|
419 |
-
leaderboard_table,
|
420 |
-
)
|
421 |
-
|
422 |
-
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
423 |
-
|
424 |
-
with gr.Accordion("✅ Finished Evaluations", open=False):
|
425 |
-
finished_eval_table = gr.components.Dataframe(
|
426 |
-
value=finished_eval_queue_df,
|
427 |
-
headers=EVAL_COLS,
|
428 |
-
datatype=EVAL_TYPES,
|
429 |
-
max_rows=5,
|
430 |
-
)
|
431 |
-
with gr.Accordion("🔄 Running Evaluation Queue", open=False):
|
432 |
-
running_eval_table = gr.components.Dataframe(
|
433 |
-
value=running_eval_queue_df,
|
434 |
-
headers=EVAL_COLS,
|
435 |
-
datatype=EVAL_TYPES,
|
436 |
-
max_rows=5,
|
437 |
-
)
|
438 |
-
|
439 |
-
with gr.Accordion("⏳ Pending Evaluation Queue", open=False):
|
440 |
-
pending_eval_table = gr.components.Dataframe(
|
441 |
-
value=pending_eval_queue_df,
|
442 |
-
headers=EVAL_COLS,
|
443 |
-
datatype=EVAL_TYPES,
|
444 |
-
max_rows=5,
|
445 |
-
)
|
446 |
-
|
447 |
-
refresh_button = gr.Button("Refresh")
|
448 |
-
refresh_button.click(
|
449 |
-
refresh,
|
450 |
-
inputs=[],
|
451 |
-
outputs=[
|
452 |
-
leaderboard_table,
|
453 |
-
finished_eval_table,
|
454 |
-
running_eval_table,
|
455 |
-
pending_eval_table,
|
456 |
-
],
|
457 |
-
)
|
458 |
-
|
459 |
-
with gr.Accordion("Submit a new model for evaluation"):
|
460 |
-
with gr.Row():
|
461 |
-
with gr.Column():
|
462 |
-
model_name_textbox = gr.Textbox(label="Model name")
|
463 |
-
revision_name_textbox = gr.Textbox(label="revision", placeholder="main")
|
464 |
-
|
465 |
with gr.Column():
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
-
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
-
|
483 |
-
|
484 |
-
|
485 |
-
|
486 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
487 |
|
488 |
scheduler = BackgroundScheduler()
|
489 |
scheduler.add_job(restart_space, "interval", seconds=3600)
|
|
|
|
|
1 |
import json
|
2 |
+
import os
|
3 |
from datetime import datetime, timezone
|
4 |
|
5 |
+
|
6 |
import gradio as gr
|
7 |
+
import numpy as np
|
8 |
import pandas as pd
|
|
|
9 |
from apscheduler.schedulers.background import BackgroundScheduler
|
10 |
+
from huggingface_hub import HfApi, Repository
|
|
|
11 |
from transformers import AutoConfig
|
12 |
+
|
13 |
+
from content import *
|
14 |
+
from elo_utils import get_elo_plots, get_elo_results_dicts
|
15 |
from utils import get_eval_results_dicts, make_clickable_model
|
16 |
|
17 |
# clone / pull the lmeh eval data
|
18 |
H4_TOKEN = os.environ.get("H4_TOKEN", None)
|
19 |
LMEH_REPO = "HuggingFaceH4/lmeh_evaluations"
|
20 |
+
HUMAN_EVAL_REPO = "HuggingFaceH4/scale-human-eval"
|
21 |
+
GPT_4_EVAL_REPO = "HuggingFaceH4/open_llm_leaderboard_oai_evals"
|
22 |
IS_PUBLIC = bool(os.environ.get("IS_PUBLIC", None))
|
23 |
|
24 |
api = HfApi()
|
|
|
60 |
requested_models_dir = "./evals/eval_requests"
|
61 |
requested_models = get_all_requested_models(requested_models_dir)
|
62 |
|
63 |
+
human_eval_repo = None
|
64 |
+
if H4_TOKEN and not os.path.isdir("./human_evals"):
|
65 |
+
print("Pulling human evaluation repo")
|
66 |
+
human_eval_repo = Repository(
|
67 |
+
local_dir="./human_evals/",
|
68 |
+
clone_from=HUMAN_EVAL_REPO,
|
69 |
+
use_auth_token=H4_TOKEN,
|
70 |
+
repo_type="dataset",
|
71 |
+
)
|
72 |
+
human_eval_repo.git_pull()
|
73 |
+
|
74 |
+
gpt_4_eval_repo = None
|
75 |
+
if H4_TOKEN and not os.path.isdir("./gpt_4_evals"):
|
76 |
+
print("Pulling GPT-4 evaluation repo")
|
77 |
+
gpt_4_eval_repo = Repository(
|
78 |
+
local_dir="./gpt_4_evals/",
|
79 |
+
clone_from=GPT_4_EVAL_REPO,
|
80 |
+
use_auth_token=H4_TOKEN,
|
81 |
+
repo_type="dataset",
|
82 |
+
)
|
83 |
+
gpt_4_eval_repo.git_pull()
|
84 |
|
85 |
# parse the results
|
86 |
BENCHMARKS = ["arc_challenge", "hellaswag", "hendrycks", "truthfulqa_mc"]
|
|
|
125 |
"TruthfulQA (0-shot) ⬆️",
|
126 |
]
|
127 |
|
128 |
+
ELO_COLS = [
|
129 |
+
"Model",
|
130 |
+
"GPT-4 (all)",
|
131 |
+
"Human (all)",
|
132 |
+
"Human (instruct)",
|
133 |
+
"Human (code-instruct)",
|
134 |
+
]
|
135 |
+
ELO_TYPES = ["markdown", "number", "number", "number", "number"]
|
136 |
+
ELO_SORT_COL = "GPT-4 (all)"
|
137 |
+
|
138 |
|
139 |
def has_no_nan_values(df, columns):
|
140 |
return df[columns].notna().all(axis=1)
|
|
|
248 |
return df_finished[EVAL_COLS], df_running[EVAL_COLS], df_pending[EVAL_COLS]
|
249 |
|
250 |
|
251 |
+
def get_elo_leaderboard(df_instruct, df_code_instruct, tie_allowed=False):
|
252 |
+
if human_eval_repo:
|
253 |
+
print("Pulling human_eval_repo changes")
|
254 |
+
human_eval_repo.git_pull()
|
255 |
+
|
256 |
+
all_data = get_elo_results_dicts(df_instruct, df_code_instruct, tie_allowed)
|
257 |
+
dataframe = pd.DataFrame.from_records(all_data)
|
258 |
+
dataframe = dataframe.sort_values(by=ELO_SORT_COL, ascending=False)
|
259 |
+
dataframe = dataframe[ELO_COLS]
|
260 |
+
return dataframe
|
261 |
+
|
262 |
+
|
263 |
+
def get_elo_elements():
|
264 |
+
df_instruct = pd.read_json("human_evals/without_code.json")
|
265 |
+
df_code_instruct = pd.read_json("human_evals/with_code.json")
|
266 |
+
|
267 |
+
elo_leaderboard = get_elo_leaderboard(
|
268 |
+
df_instruct, df_code_instruct, tie_allowed=False
|
269 |
+
)
|
270 |
+
elo_leaderboard_with_tie_allowed = get_elo_leaderboard(
|
271 |
+
df_instruct, df_code_instruct, tie_allowed=True
|
272 |
+
)
|
273 |
+
plot_1, plot_2, plot_3, plot_4 = get_elo_plots(
|
274 |
+
df_instruct, df_code_instruct, tie_allowed=False
|
275 |
+
)
|
276 |
+
|
277 |
+
return (
|
278 |
+
elo_leaderboard,
|
279 |
+
elo_leaderboard_with_tie_allowed,
|
280 |
+
plot_1,
|
281 |
+
plot_2,
|
282 |
+
plot_3,
|
283 |
+
plot_4,
|
284 |
+
)
|
285 |
+
|
286 |
+
|
287 |
original_df = get_leaderboard_df()
|
288 |
leaderboard_df = original_df.copy()
|
289 |
(
|
|
|
291 |
running_eval_queue_df,
|
292 |
pending_eval_queue_df,
|
293 |
) = get_evaluation_queue_df()
|
294 |
+
(
|
295 |
+
elo_leaderboard,
|
296 |
+
elo_leaderboard_with_tie_allowed,
|
297 |
+
plot_1,
|
298 |
+
plot_2,
|
299 |
+
plot_3,
|
300 |
+
plot_4,
|
301 |
+
) = get_elo_elements()
|
302 |
|
303 |
|
304 |
def is_model_on_hub(model_name, revision) -> bool:
|
|
|
438 |
}
|
439 |
|
440 |
/* Hides the final column */
|
441 |
+
#llm-benchmark-tab-table table td:last-child,
|
442 |
+
#llm-benchmark-tab-table table th:last-child {
|
443 |
display: none;
|
444 |
}
|
445 |
|
|
|
446 |
/* Limit the width of the first column so that names don't expand too much */
|
447 |
table td:first-child,
|
448 |
table th:first-child {
|
|
|
451 |
white-space: nowrap;
|
452 |
}
|
453 |
|
454 |
+
.tab-buttons button {
|
455 |
+
font-size: 16px;
|
456 |
+
}
|
457 |
+
|
458 |
+
#scale-logo {
|
459 |
+
border-style: none !important;
|
460 |
+
box-shadow: none;
|
461 |
+
display: block;
|
462 |
+
margin-left: auto;
|
463 |
+
margin-right: auto;
|
464 |
+
max-width: 600px;
|
465 |
+
}
|
466 |
+
|
467 |
+
#scale-logo .download {
|
468 |
+
display: none;
|
469 |
+
}
|
470 |
"""
|
471 |
|
472 |
|
473 |
demo = gr.Blocks(css=custom_css)
|
474 |
with demo:
|
475 |
gr.HTML(TITLE)
|
476 |
+
with gr.Row():
|
477 |
+
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
478 |
|
479 |
with gr.Row():
|
480 |
with gr.Column():
|
|
|
488 |
with gr.Accordion("✨ CHANGELOG", open=False):
|
489 |
changelog = gr.Markdown(CHANGELOG_TEXT, elem_id="changelog-text")
|
490 |
|
491 |
+
with gr.Tabs(elem_classes="tab-buttons"):
|
492 |
+
with gr.TabItem("📊 LLM Benchmarks", elem_id="llm-benchmark-tab-table"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
493 |
with gr.Column():
|
494 |
+
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
495 |
+
with gr.Box(elem_id="search-bar-table-box"):
|
496 |
+
search_bar = gr.Textbox(
|
497 |
+
placeholder="🔍 Search your model and press ENTER...",
|
498 |
+
show_label=False,
|
499 |
+
elem_id="search-bar",
|
500 |
+
)
|
501 |
+
|
502 |
+
leaderboard_table = gr.components.Dataframe(
|
503 |
+
value=leaderboard_df,
|
504 |
+
headers=COLS,
|
505 |
+
datatype=TYPES,
|
506 |
+
max_rows=5,
|
507 |
+
elem_id="leaderboard-table",
|
508 |
+
)
|
509 |
+
|
510 |
+
# Dummy leaderboard for handling the case when the user uses backspace key
|
511 |
+
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
512 |
+
value=original_df,
|
513 |
+
headers=COLS,
|
514 |
+
datatype=TYPES,
|
515 |
+
max_rows=5,
|
516 |
+
visible=False,
|
517 |
+
)
|
518 |
+
|
519 |
+
search_bar.submit(
|
520 |
+
search_table,
|
521 |
+
[hidden_leaderboard_table_for_search, search_bar],
|
522 |
+
leaderboard_table,
|
523 |
+
)
|
524 |
+
|
525 |
+
with gr.Row():
|
526 |
+
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
527 |
+
|
528 |
+
with gr.Accordion("✅ Finished Evaluations", open=False):
|
529 |
+
with gr.Row():
|
530 |
+
finished_eval_table = gr.components.Dataframe(
|
531 |
+
value=finished_eval_queue_df,
|
532 |
+
headers=EVAL_COLS,
|
533 |
+
datatype=EVAL_TYPES,
|
534 |
+
max_rows=5,
|
535 |
+
)
|
536 |
+
with gr.Accordion("🔄 Running Evaluation Queue", open=False):
|
537 |
+
with gr.Row():
|
538 |
+
running_eval_table = gr.components.Dataframe(
|
539 |
+
value=running_eval_queue_df,
|
540 |
+
headers=EVAL_COLS,
|
541 |
+
datatype=EVAL_TYPES,
|
542 |
+
max_rows=5,
|
543 |
+
)
|
544 |
+
|
545 |
+
with gr.Accordion("⏳ Pending Evaluation Queue", open=False):
|
546 |
+
with gr.Row():
|
547 |
+
pending_eval_table = gr.components.Dataframe(
|
548 |
+
value=pending_eval_queue_df,
|
549 |
+
headers=EVAL_COLS,
|
550 |
+
datatype=EVAL_TYPES,
|
551 |
+
max_rows=5,
|
552 |
+
)
|
553 |
+
|
554 |
+
with gr.Row():
|
555 |
+
refresh_button = gr.Button("Refresh")
|
556 |
+
refresh_button.click(
|
557 |
+
refresh,
|
558 |
+
inputs=[],
|
559 |
+
outputs=[
|
560 |
+
leaderboard_table,
|
561 |
+
finished_eval_table,
|
562 |
+
running_eval_table,
|
563 |
+
pending_eval_table,
|
564 |
+
],
|
565 |
+
)
|
566 |
+
with gr.Accordion("Submit a new model for evaluation"):
|
567 |
+
with gr.Row():
|
568 |
+
with gr.Column():
|
569 |
+
model_name_textbox = gr.Textbox(label="Model name")
|
570 |
+
revision_name_textbox = gr.Textbox(
|
571 |
+
label="revision", placeholder="main"
|
572 |
+
)
|
573 |
+
|
574 |
+
with gr.Column():
|
575 |
+
is_8bit_toggle = gr.Checkbox(
|
576 |
+
False, label="8 bit eval", visible=not IS_PUBLIC
|
577 |
+
)
|
578 |
+
private = gr.Checkbox(
|
579 |
+
False, label="Private", visible=not IS_PUBLIC
|
580 |
+
)
|
581 |
+
is_delta_weight = gr.Checkbox(False, label="Delta weights")
|
582 |
+
base_model_name_textbox = gr.Textbox(
|
583 |
+
label="base model (for delta)"
|
584 |
+
)
|
585 |
+
|
586 |
+
submit_button = gr.Button("Submit Eval")
|
587 |
+
submission_result = gr.Markdown()
|
588 |
+
submit_button.click(
|
589 |
+
add_new_eval,
|
590 |
+
[
|
591 |
+
model_name_textbox,
|
592 |
+
base_model_name_textbox,
|
593 |
+
revision_name_textbox,
|
594 |
+
is_8bit_toggle,
|
595 |
+
private,
|
596 |
+
is_delta_weight,
|
597 |
+
],
|
598 |
+
submission_result,
|
599 |
+
)
|
600 |
+
with gr.TabItem(
|
601 |
+
"🧑⚖️ Human & GPT-4 Evaluations 🤖", elem_id="human-gpt-tab-table"
|
602 |
+
):
|
603 |
+
with gr.Row():
|
604 |
+
with gr.Column(scale=2):
|
605 |
+
gr.Markdown(HUMAN_GPT_EVAL_TEXT, elem_classes="markdown-text")
|
606 |
+
with gr.Column(scale=1):
|
607 |
+
gr.Image(
|
608 |
+
"scale-hf-logo.png", elem_id="scale-logo", show_label=False
|
609 |
+
)
|
610 |
+
gr.Markdown("## No tie")
|
611 |
+
elo_leaderboard_table = gr.components.Dataframe(
|
612 |
+
value=elo_leaderboard,
|
613 |
+
headers=ELO_COLS,
|
614 |
+
datatype=ELO_TYPES,
|
615 |
+
max_rows=5,
|
616 |
+
)
|
617 |
+
|
618 |
+
gr.Markdown("## Tie allowed*")
|
619 |
+
elo_leaderboard_table_with_tie_allowed = gr.components.Dataframe(
|
620 |
+
value=elo_leaderboard_with_tie_allowed,
|
621 |
+
headers=ELO_COLS,
|
622 |
+
datatype=ELO_TYPES,
|
623 |
+
max_rows=5,
|
624 |
+
)
|
625 |
+
|
626 |
+
gr.Markdown("\* Results when the scores of 4 and 5 were treated as ties.", elem_classes="markdown-text")
|
627 |
+
# with gr.Box():
|
628 |
+
# visualization_title = gr.HTML(VISUALIZATION_TITLE)
|
629 |
+
# with gr.Row():
|
630 |
+
# with gr.Column():
|
631 |
+
# gr.Markdown(f"#### Figure 1: {PLOT_1_TITLE}")
|
632 |
+
# plot_1 = gr.Plot(plot_1, show_label=False)
|
633 |
+
# with gr.Column():
|
634 |
+
# gr.Markdown(f"#### Figure 2: {PLOT_2_TITLE}")
|
635 |
+
# plot_2 = gr.Plot(plot_2, show_label=False)
|
636 |
+
# with gr.Row():
|
637 |
+
# with gr.Column():
|
638 |
+
# gr.Markdown(f"#### Figure 3: {PLOT_3_TITLE}")
|
639 |
+
# plot_3 = gr.Plot(plot_3, show_label=False)
|
640 |
+
# with gr.Column():
|
641 |
+
# gr.Markdown(f"#### Figure 4: {PLOT_4_TITLE}")
|
642 |
+
# plot_4 = gr.Plot(plot_4, show_label=False)
|
643 |
|
644 |
scheduler = BackgroundScheduler()
|
645 |
scheduler.add_job(restart_space, "interval", seconds=3600)
|
content.py
CHANGED
@@ -1,4 +1,7 @@
|
|
1 |
CHANGELOG_TEXT = f"""
|
|
|
|
|
|
|
2 |
## [2023-06-05]
|
3 |
- Increase concurrent thread count to 40
|
4 |
- Search models on ENTER
|
@@ -47,7 +50,11 @@ INTRODUCTION_TEXT = f"""
|
|
47 |
|
48 |
🤗 A key advantage of this leaderboard is that anyone from the community can submit a model for automated evaluation on the 🤗 GPU cluster, as long as it is a 🤗 Transformers model with weights on the Hub. We also support evaluation of models with delta-weights for non-commercial licensed models, such as LLaMa.
|
49 |
|
50 |
-
📈
|
|
|
|
|
|
|
|
|
51 |
- <a href="https://arxiv.org/abs/1803.05457" target="_blank"> AI2 Reasoning Challenge </a> (25-shot) - a set of grade-school science questions.
|
52 |
- <a href="https://arxiv.org/abs/1905.07830" target="_blank"> HellaSwag </a> (10-shot) - a test of commonsense inference, which is easy for humans (~95%) but challenging for SOTA models.
|
53 |
- <a href="https://arxiv.org/abs/2009.03300" target="_blank"> MMLU </a> (5-shot) - a test to measure a text model's multitask accuracy. The test covers 57 tasks including elementary mathematics, US history, computer science, law, and more.
|
@@ -56,6 +63,15 @@ INTRODUCTION_TEXT = f"""
|
|
56 |
We chose these benchmarks as they test a variety of reasoning and general knowledge across a wide variety of fields in 0-shot and few-shot settings.
|
57 |
"""
|
58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
EVALUATION_QUEUE_TEXT = f"""
|
60 |
# Evaluation Queue for the 🤗 Open LLM Leaderboard, these models will be automatically evaluated on the 🤗 cluster
|
61 |
"""
|
@@ -128,3 +144,12 @@ CITATION_BUTTON_TEXT = r"""@misc{open-llm-leaderboard,
|
|
128 |
primaryClass={cs.CL}
|
129 |
}"""
|
130 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
CHANGELOG_TEXT = f"""
|
2 |
+
## [2023-06-12]
|
3 |
+
- Add Human & GPT-4 Evaluations
|
4 |
+
|
5 |
## [2023-06-05]
|
6 |
- Increase concurrent thread count to 40
|
7 |
- Search models on ENTER
|
|
|
50 |
|
51 |
🤗 A key advantage of this leaderboard is that anyone from the community can submit a model for automated evaluation on the 🤗 GPU cluster, as long as it is a 🤗 Transformers model with weights on the Hub. We also support evaluation of models with delta-weights for non-commercial licensed models, such as LLaMa.
|
52 |
|
53 |
+
📈 In the **first tab (LLM Benchmarks)**, we evaluate models on 4 key benchmarks from the <a href="https://github.com/EleutherAI/lm-evaluation-harness" target="_blank"> Eleuther AI Language Model Evaluation Harness </a>, a unified framework to test generative language models on a large number of different evaluation tasks. In the **second tab (Human & GPT Evaluations)**, the evaluations are performed by having humans and GPT-4 compare completions from a set of popular open-source language models (LLMs) on a secret set of instruction prompts.
|
54 |
+
"""
|
55 |
+
|
56 |
+
LLM_BENCHMARKS_TEXT = f"""
|
57 |
+
Evaluation is performed against 4 popular benchmarks:
|
58 |
- <a href="https://arxiv.org/abs/1803.05457" target="_blank"> AI2 Reasoning Challenge </a> (25-shot) - a set of grade-school science questions.
|
59 |
- <a href="https://arxiv.org/abs/1905.07830" target="_blank"> HellaSwag </a> (10-shot) - a test of commonsense inference, which is easy for humans (~95%) but challenging for SOTA models.
|
60 |
- <a href="https://arxiv.org/abs/2009.03300" target="_blank"> MMLU </a> (5-shot) - a test to measure a text model's multitask accuracy. The test covers 57 tasks including elementary mathematics, US history, computer science, law, and more.
|
|
|
63 |
We chose these benchmarks as they test a variety of reasoning and general knowledge across a wide variety of fields in 0-shot and few-shot settings.
|
64 |
"""
|
65 |
|
66 |
+
HUMAN_GPT_EVAL_TEXT = f"""
|
67 |
+
Evaluation is performed by having humans and GPT-4 compare completions from a set of popular open-source language models (LLMs) on a secret set of instruction prompts. The prompts cover tasks such as brainstorming, creative generation, commonsense reasoning, open question answering, summarization, and code generation. Comparisons are made by humans and a model on a 1-8 Likert scale, where the labeler is required to choose a preference each time. Using these preferences, we create bootstrapped Elo rankings.
|
68 |
+
|
69 |
+
We collaborated with **Scale AI** to generate the completions using a professional data labeling workforce on their platform, [following the labeling instructions found here](https://docs.google.com/document/d/1c5-96Lj-UH4lzKjLvJ_MRQaVMjtoEXTYA4dvoAYVCHc/edit?usp=sharing). To understand the evaluation of popular models, we also had GPT-4 label the completions using this prompt.
|
70 |
+
|
71 |
+
For more information on the calibration and initiation of these measurements, please refer to the [announcement blog post](https://huggingface.co/blog/llm-leaderboard). We would like to express our gratitude to **LMSYS** for providing a [useful notebook](https://colab.research.google.com/drive/1lAQ9cKVErXI1rEYq7hTKNaCQ5Q8TzrI5?usp=sharing) for computing Elo estimates and plots.
|
72 |
+
"""
|
73 |
+
|
74 |
+
|
75 |
EVALUATION_QUEUE_TEXT = f"""
|
76 |
# Evaluation Queue for the 🤗 Open LLM Leaderboard, these models will be automatically evaluated on the 🤗 cluster
|
77 |
"""
|
|
|
144 |
primaryClass={cs.CL}
|
145 |
}"""
|
146 |
|
147 |
+
VISUALIZATION_TITLE = """<h1 align="center" id="space-title">📊 Visualizations</h1>"""
|
148 |
+
|
149 |
+
PLOT_1_TITLE = "Fraction of Model A Wins for All Non-tied A vs. B Comparisons"
|
150 |
+
|
151 |
+
PLOT_2_TITLE = "Comparison Count of Each Combination of Models (not allowing ties)"
|
152 |
+
|
153 |
+
PLOT_3_TITLE = "Elo Estimates with error bars (ties allowed)"
|
154 |
+
|
155 |
+
PLOT_4_TITLE = "Fraction of Model A Wins for All Non-tied A vs. B Comparisons"
|
elo_utils.py
ADDED
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import defaultdict
|
2 |
+
from dataclasses import dataclass
|
3 |
+
from typing import Dict, List
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import pandas as pd
|
7 |
+
from datasets import load_dataset
|
8 |
+
|
9 |
+
from content import PLOT_1_TITLE, PLOT_2_TITLE, PLOT_3_TITLE, PLOT_4_TITLE
|
10 |
+
from utils import make_clickable_model
|
11 |
+
from visualizations import (get_bootstrap_result, switch_model_a_b,
|
12 |
+
visualize_battle_count, visualize_bootstrap_scores,
|
13 |
+
visualize_pairwise_win_fraction,
|
14 |
+
visualize_rating_count)
|
15 |
+
|
16 |
+
|
17 |
+
@dataclass
|
18 |
+
class EloEvalResult:
|
19 |
+
model: str
|
20 |
+
gpt_4_all: int
|
21 |
+
human_all: int
|
22 |
+
human_instruct: int
|
23 |
+
human_code_instruct: int
|
24 |
+
tie_allowed: bool
|
25 |
+
|
26 |
+
def to_dict(self):
|
27 |
+
base_model = f"{self.model}"
|
28 |
+
data_dict = {}
|
29 |
+
data_dict["Model"] = make_clickable_model(base_model)
|
30 |
+
data_dict["GPT-4 (all)"] = self.gpt_4_all
|
31 |
+
data_dict["Human (all)"] = self.human_all
|
32 |
+
data_dict["Human (instruct)"] = self.human_instruct
|
33 |
+
data_dict["Human (code-instruct)"] = self.human_code_instruct
|
34 |
+
|
35 |
+
return data_dict
|
36 |
+
|
37 |
+
|
38 |
+
def create_eval_df(df, tie_allowed):
|
39 |
+
responses = []
|
40 |
+
for _, row in df.iterrows():
|
41 |
+
if row["status"] == "canceled":
|
42 |
+
continue
|
43 |
+
|
44 |
+
rating = row["response"]["annotations"]["Preference"]
|
45 |
+
if rating == "NaN":
|
46 |
+
continue
|
47 |
+
|
48 |
+
scores = row["response"]["responses"]
|
49 |
+
if any(s["Preference"] == "" for s in scores):
|
50 |
+
continue
|
51 |
+
|
52 |
+
response = {
|
53 |
+
"id": row["task_id"],
|
54 |
+
"prompt": row["params"]["templateVariables"]["prompt"],
|
55 |
+
"model_a": row["params"]["templateVariables"]["modela"],
|
56 |
+
"model_b": row["params"]["templateVariables"]["modelb"],
|
57 |
+
"response_a": row["params"]["templateVariables"]["response1"],
|
58 |
+
"response_b": row["params"]["templateVariables"]["response2"],
|
59 |
+
"rating": int(rating),
|
60 |
+
"ratings": [np.array([s["Preference"] for s in scores], dtype=np.int32)],
|
61 |
+
}
|
62 |
+
|
63 |
+
if tie_allowed:
|
64 |
+
response["win"] = "model_a" if response["rating"] < 4 else "model_b" if response["rating"] > 5 else "tie"
|
65 |
+
else:
|
66 |
+
response["win"] = "model_a" if response["rating"] < 5 else "model_b"
|
67 |
+
|
68 |
+
responses.append(response)
|
69 |
+
|
70 |
+
return pd.DataFrame(responses)
|
71 |
+
|
72 |
+
|
73 |
+
def create_eval_df_for_gpt(df, tie_allowed):
|
74 |
+
responses = []
|
75 |
+
for _, row in df.iterrows():
|
76 |
+
response = {
|
77 |
+
"id": row["review_id"],
|
78 |
+
"prompt": row["question"],
|
79 |
+
"model_a": row["model1"],
|
80 |
+
"model_b": row["model2"],
|
81 |
+
"response_a": row["answer1"],
|
82 |
+
"response_b": row["answer2"],
|
83 |
+
"rating": row["score"][0],
|
84 |
+
}
|
85 |
+
|
86 |
+
if tie_allowed:
|
87 |
+
response["win"] = "model_a" if response["rating"] < 4 else "model_b" if response["rating"] > 5 else "tie"
|
88 |
+
else:
|
89 |
+
response["win"] = "model_a" if response["rating"] < 5 else "model_b"
|
90 |
+
|
91 |
+
responses.append(response)
|
92 |
+
|
93 |
+
return pd.DataFrame(responses)
|
94 |
+
|
95 |
+
|
96 |
+
# Compute the Elo rating for each model
|
97 |
+
def compute_elo(df, k=32, scale=400, base=10, initial_rating=1000):
|
98 |
+
rating = defaultdict(lambda: initial_rating)
|
99 |
+
|
100 |
+
for _, model_a, model_b, win in df[["model_a", "model_b", "win"]].itertuples():
|
101 |
+
ra = rating[model_a]
|
102 |
+
rb = rating[model_b]
|
103 |
+
ea = 1 / (1 + base ** ((rb - ra) / scale))
|
104 |
+
eb = 1 / (1 + base ** ((ra - rb) / scale))
|
105 |
+
if win == "model_a":
|
106 |
+
sa = 1
|
107 |
+
elif win == "model_b":
|
108 |
+
sa = 0
|
109 |
+
elif win == "tie" or win == "tie (bothbad)":
|
110 |
+
sa = 0.5
|
111 |
+
else:
|
112 |
+
raise Exception(f"unexpected vote {win}")
|
113 |
+
rating[model_a] += k * (sa - ea)
|
114 |
+
rating[model_b] += k * (1 - sa - eb)
|
115 |
+
|
116 |
+
return rating
|
117 |
+
|
118 |
+
|
119 |
+
def convert_rating_from_float_to_int(df):
|
120 |
+
return {model: int(rating) for model, rating in compute_elo(df).items()}
|
121 |
+
|
122 |
+
|
123 |
+
def get_elo_results(df_instruct, df_code_instruct, tie_allowed):
|
124 |
+
df_all = pd.concat([df_instruct, df_code_instruct])
|
125 |
+
|
126 |
+
df_gpt_4 = load_dataset(
|
127 |
+
"gpt_4_evals/data/", split="train", revision="e007baaf6e505731c08a0bc1a833a1f8f8cb8846"
|
128 |
+
).to_pandas()
|
129 |
+
|
130 |
+
dfs = [df_instruct, df_code_instruct, df_all]
|
131 |
+
elo_ratings = [convert_rating_from_float_to_int(create_eval_df(df, tie_allowed=tie_allowed)) for df in dfs]
|
132 |
+
|
133 |
+
gpt_4_elo_ratings = convert_rating_from_float_to_int(create_eval_df_for_gpt(df_gpt_4, tie_allowed=tie_allowed))
|
134 |
+
elo_ratings.append(gpt_4_elo_ratings)
|
135 |
+
|
136 |
+
results = [
|
137 |
+
EloEvalResult(
|
138 |
+
model=model_name,
|
139 |
+
gpt_4_all=elo_ratings[3][model_name],
|
140 |
+
human_all=elo_ratings[2][model_name],
|
141 |
+
human_instruct=elo_ratings[0][model_name],
|
142 |
+
human_code_instruct=elo_ratings[1][model_name],
|
143 |
+
tie_allowed=tie_allowed,
|
144 |
+
)
|
145 |
+
for model_name in elo_ratings[0].keys()
|
146 |
+
]
|
147 |
+
|
148 |
+
return results
|
149 |
+
|
150 |
+
|
151 |
+
def get_elo_results_dicts(df_instruct, df_code_instruct, tie_allowed) -> List[Dict]:
|
152 |
+
eval_results = get_elo_results(df_instruct, df_code_instruct, tie_allowed)
|
153 |
+
return [r.to_dict() for r in eval_results]
|
154 |
+
|
155 |
+
|
156 |
+
def get_elo_plots(df_instruct, df_code_instruct, tie_allowed):
|
157 |
+
df_instruct = create_eval_df(df_instruct, tie_allowed=tie_allowed)
|
158 |
+
df_code_instruct = create_eval_df(df_code_instruct, tie_allowed=tie_allowed)
|
159 |
+
df_all = pd.concat([df_instruct, df_code_instruct])
|
160 |
+
game = df_all[["model_a", "model_b", "win"]]
|
161 |
+
|
162 |
+
game_switch = switch_model_a_b(game)
|
163 |
+
plot_1 = visualize_pairwise_win_fraction(game_switch, PLOT_1_TITLE)
|
164 |
+
|
165 |
+
plot_2 = visualize_battle_count(game_switch, PLOT_2_TITLE)
|
166 |
+
|
167 |
+
BOOTSTRAP_ROUNDS = 1000
|
168 |
+
if "bootstrap_elo_lu" not in globals():
|
169 |
+
bootstrap_elo_lu = get_bootstrap_result(game_switch, compute_elo, BOOTSTRAP_ROUNDS)
|
170 |
+
|
171 |
+
plot_3 = visualize_bootstrap_scores(bootstrap_elo_lu, PLOT_3_TITLE)
|
172 |
+
|
173 |
+
plot_4 = visualize_rating_count(game, PLOT_4_TITLE)
|
174 |
+
|
175 |
+
return plot_1, plot_2, plot_3, plot_4
|
utils.py
CHANGED
@@ -1,21 +1,11 @@
|
|
1 |
-
import os
|
2 |
-
import shutil
|
3 |
-
import numpy as np
|
4 |
-
import gradio as gr
|
5 |
-
from huggingface_hub import Repository, HfApi
|
6 |
-
from transformers import AutoConfig, AutoModel
|
7 |
-
import json
|
8 |
-
from apscheduler.schedulers.background import BackgroundScheduler
|
9 |
-
import pandas as pd
|
10 |
-
import datetime
|
11 |
import glob
|
|
|
12 |
from dataclasses import dataclass
|
13 |
-
from typing import List, Tuple
|
14 |
|
15 |
-
|
16 |
-
H4_TOKEN = os.environ.get("H4_TOKEN", None)
|
17 |
-
LMEH_REPO = "HuggingFaceH4/lmeh_evaluations"
|
18 |
|
|
|
19 |
METRICS = ["acc_norm", "acc_norm", "acc_norm", "mc2"]
|
20 |
BENCHMARKS = ["arc_challenge", "hellaswag", "hendrycks", "truthfulqa_mc"]
|
21 |
BENCH_TO_NAME = {
|
@@ -71,13 +61,11 @@ class EvalResult:
|
|
71 |
data_dict["eval_name"] = self.eval_name
|
72 |
data_dict["8bit"] = self.is_8bit
|
73 |
data_dict["Model"] = make_clickable_model(base_model)
|
74 |
-
# dummy column to implement search bar (hidden by custom CSS)
|
75 |
data_dict["model_name_for_query"] = base_model
|
76 |
data_dict["Revision"] = self.revision
|
77 |
data_dict["Average ⬆️"] = round(
|
78 |
sum([v for k, v in self.results.items()]) / 4.0, 1
|
79 |
)
|
80 |
-
# data_dict["# params"] = get_n_params(base_model)
|
81 |
|
82 |
for benchmark in BENCHMARKS:
|
83 |
if not benchmark in self.results.keys():
|
@@ -151,7 +139,3 @@ def get_eval_results_dicts(is_public=True) -> List[Dict]:
|
|
151 |
eval_results = get_eval_results(is_public)
|
152 |
|
153 |
return [e.to_dict() for e in eval_results]
|
154 |
-
|
155 |
-
|
156 |
-
eval_results_dict = get_eval_results_dicts()
|
157 |
-
# print(eval_results_dict)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import glob
|
2 |
+
import json
|
3 |
from dataclasses import dataclass
|
4 |
+
from typing import Dict, List, Tuple
|
5 |
|
6 |
+
import numpy as np
|
|
|
|
|
7 |
|
8 |
+
# clone / pull the lmeh eval data
|
9 |
METRICS = ["acc_norm", "acc_norm", "acc_norm", "mc2"]
|
10 |
BENCHMARKS = ["arc_challenge", "hellaswag", "hendrycks", "truthfulqa_mc"]
|
11 |
BENCH_TO_NAME = {
|
|
|
61 |
data_dict["eval_name"] = self.eval_name
|
62 |
data_dict["8bit"] = self.is_8bit
|
63 |
data_dict["Model"] = make_clickable_model(base_model)
|
|
|
64 |
data_dict["model_name_for_query"] = base_model
|
65 |
data_dict["Revision"] = self.revision
|
66 |
data_dict["Average ⬆️"] = round(
|
67 |
sum([v for k, v in self.results.items()]) / 4.0, 1
|
68 |
)
|
|
|
69 |
|
70 |
for benchmark in BENCHMARKS:
|
71 |
if not benchmark in self.results.keys():
|
|
|
139 |
eval_results = get_eval_results(is_public)
|
140 |
|
141 |
return [e.to_dict() for e in eval_results]
|
|
|
|
|
|
|
|
visualizations.py
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import pandas as pd
|
5 |
+
import plotly.express as px
|
6 |
+
|
7 |
+
|
8 |
+
# 1
|
9 |
+
def compute_pairwise_win_fraction(battles):
|
10 |
+
# Times each model wins as Model A
|
11 |
+
a_win_ptbl = pd.pivot_table(
|
12 |
+
battles[battles["win"] == "model_a"],
|
13 |
+
index="model_a",
|
14 |
+
columns="model_b",
|
15 |
+
aggfunc="size",
|
16 |
+
fill_value=0,
|
17 |
+
)
|
18 |
+
|
19 |
+
# Table counting times each model wins as Model B
|
20 |
+
b_win_ptbl = pd.pivot_table(
|
21 |
+
battles[battles["win"] == "model_b"],
|
22 |
+
index="model_a",
|
23 |
+
columns="model_b",
|
24 |
+
aggfunc="size",
|
25 |
+
fill_value=0,
|
26 |
+
)
|
27 |
+
|
28 |
+
# Table counting number of A-B pairs
|
29 |
+
num_battles_ptbl = pd.pivot_table(battles, index="model_a", columns="model_b", aggfunc="size", fill_value=0)
|
30 |
+
|
31 |
+
# Computing the proportion of wins for each model as A and as B
|
32 |
+
# against all other models
|
33 |
+
row_beats_col_freq = (a_win_ptbl + b_win_ptbl.T) / (num_battles_ptbl + num_battles_ptbl.T)
|
34 |
+
|
35 |
+
# Arrange ordering according to proprition of wins
|
36 |
+
prop_wins = row_beats_col_freq.mean(axis=1).sort_values(ascending=False)
|
37 |
+
model_names = list(prop_wins.keys())
|
38 |
+
row_beats_col = row_beats_col_freq.loc[model_names, model_names]
|
39 |
+
return row_beats_col
|
40 |
+
|
41 |
+
|
42 |
+
def visualize_pairwise_win_fraction(battles, title):
|
43 |
+
row_beats_col = compute_pairwise_win_fraction(battles)
|
44 |
+
fig = px.imshow(row_beats_col, color_continuous_scale="RdBu", text_auto=".2f", title=title)
|
45 |
+
fig.update_layout(
|
46 |
+
xaxis_title="Model B",
|
47 |
+
yaxis_title="Model A",
|
48 |
+
xaxis_side="top",
|
49 |
+
title_y=0.07,
|
50 |
+
title_x=0.5,
|
51 |
+
)
|
52 |
+
fig.update_traces(hovertemplate="Model A: %{y}<br>Model B: %{x}<br>Fraction of A Wins: %{z}<extra></extra>")
|
53 |
+
return fig
|
54 |
+
|
55 |
+
|
56 |
+
# 2
|
57 |
+
def switch_model_a_b(df):
|
58 |
+
df_switch = df.copy()
|
59 |
+
# switch with probability 0.5
|
60 |
+
for i, row in df.iterrows():
|
61 |
+
if np.random.rand() < 0.5:
|
62 |
+
df_switch.at[i, "model_a"] = row["model_b"]
|
63 |
+
df_switch.at[i, "model_b"] = row["model_a"]
|
64 |
+
if row["win"] == "model_a":
|
65 |
+
df_switch.at[i, "win"] = "model_b"
|
66 |
+
elif row["win"] == "model_b":
|
67 |
+
df_switch.at[i, "win"] = "model_a"
|
68 |
+
return df_switch
|
69 |
+
|
70 |
+
|
71 |
+
def visualize_battle_count(battles, title):
|
72 |
+
ptbl = pd.pivot_table(battles, index="model_a", columns="model_b", aggfunc="size", fill_value=0)
|
73 |
+
battle_counts = ptbl + ptbl.T
|
74 |
+
ordering = battle_counts.sum().sort_values(ascending=False).index
|
75 |
+
fig = px.imshow(battle_counts.loc[ordering, ordering], title=title, text_auto=True, width=600)
|
76 |
+
fig.update_layout(
|
77 |
+
xaxis_title="Model B",
|
78 |
+
yaxis_title="Model A",
|
79 |
+
xaxis_side="top",
|
80 |
+
title_y=0.07,
|
81 |
+
title_x=0.5,
|
82 |
+
)
|
83 |
+
fig.update_traces(hovertemplate="Model A: %{y}<br>Model B: %{x}<br>Count: %{z}<extra></extra>")
|
84 |
+
return fig
|
85 |
+
|
86 |
+
|
87 |
+
# 3
|
88 |
+
def get_bootstrap_result(battles, func_compute_elo, num_round):
|
89 |
+
rows = [func_compute_elo(battles.sample(frac=1.0, replace=True)) for _ in range(num_round)]
|
90 |
+
df = pd.DataFrame(rows)
|
91 |
+
return df[df.median().sort_values(ascending=False).index]
|
92 |
+
|
93 |
+
|
94 |
+
def visualize_bootstrap_scores(df, title):
|
95 |
+
bars = (
|
96 |
+
pd.DataFrame(
|
97 |
+
dict(
|
98 |
+
lower=df.quantile(0.025),
|
99 |
+
rating=df.quantile(0.5),
|
100 |
+
upper=df.quantile(0.975),
|
101 |
+
)
|
102 |
+
)
|
103 |
+
.reset_index(names="model")
|
104 |
+
.sort_values("rating", ascending=False)
|
105 |
+
)
|
106 |
+
bars["error_y"] = bars["upper"] - bars["rating"]
|
107 |
+
bars["error_y_minus"] = bars["rating"] - bars["lower"]
|
108 |
+
bars["rating_rounded"] = np.round(bars["rating"], 2)
|
109 |
+
fig = px.scatter(
|
110 |
+
bars,
|
111 |
+
x="model",
|
112 |
+
y="rating",
|
113 |
+
error_y="error_y",
|
114 |
+
error_y_minus="error_y_minus",
|
115 |
+
text="rating_rounded",
|
116 |
+
title=title,
|
117 |
+
)
|
118 |
+
fig.update_layout(xaxis_title="Model", yaxis_title="Rating")
|
119 |
+
return fig
|
120 |
+
|
121 |
+
|
122 |
+
# 4
|
123 |
+
def visualize_rating_count(df, title):
|
124 |
+
df_all_value_counts = pd.concat([df["model_a"], df["model_b"]]).value_counts()
|
125 |
+
fig = px.bar(df_all_value_counts, title=title, text_auto=True)
|
126 |
+
|
127 |
+
min_y = df_all_value_counts.min()
|
128 |
+
max_y = df_all_value_counts.max()
|
129 |
+
|
130 |
+
y_end = math.ceil(min_y / 100) * 100
|
131 |
+
y_begin = math.floor(max_y / 100) * 100
|
132 |
+
|
133 |
+
fig.update_layout(xaxis_title="model", yaxis_title="Rating Count", showlegend=False)
|
134 |
+
fig.update_yaxes(range=[y_begin, y_end])
|
135 |
+
# save the plot for the blog:
|
136 |
+
fig.write_html("model_counts.html", full_html=False, include_plotlyjs="cdn")
|
137 |
+
return fig
|