spuun
commited on
Commit
·
79015ec
0
Parent(s):
Duplicate from spuun/lama
Browse files- .gitattributes +34 -0
- README.md +13 -0
- app.py +52 -0
- convert.py +1149 -0
- requirements.txt +3 -0
.gitattributes
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Lama
|
3 |
+
emoji: 🐨
|
4 |
+
colorFrom: red
|
5 |
+
colorTo: green
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 3.24.1
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
duplicated_from: spuun/lama
|
11 |
+
---
|
12 |
+
|
13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from llama_cpp import Llama
|
2 |
+
import gradio
|
3 |
+
import random
|
4 |
+
import requests
|
5 |
+
import os
|
6 |
+
import subprocess
|
7 |
+
|
8 |
+
if not os.path.exists("ggml-model-q4_0.bin"):
|
9 |
+
open("ggml-model-q4_0.bin", "wb").write(
|
10 |
+
requests.get(
|
11 |
+
"https://huggingface.co/hlhr202/llama-7B-ggml-int4/resolve/main/ggml-model-q4_0.bin"
|
12 |
+
).content
|
13 |
+
)
|
14 |
+
open("tokenizer.model", "wb").write(
|
15 |
+
requests.get(
|
16 |
+
"https://huggingface.co/decapoda-research/llama-7b-hf/resolve/main/tokenizer.model"
|
17 |
+
).content
|
18 |
+
)
|
19 |
+
print("Downloaded model files. Doing conversion.")
|
20 |
+
print(
|
21 |
+
subprocess.check_output(
|
22 |
+
"python convert.py ggml-model-q4_0.bin --outfile ggml-model.bin", shell=True
|
23 |
+
).decode("utf-8")
|
24 |
+
)
|
25 |
+
else:
|
26 |
+
print("Model already exists, skipping redownload")
|
27 |
+
|
28 |
+
|
29 |
+
print("Loading model...")
|
30 |
+
llm = Llama(
|
31 |
+
model_path="ggml-model.bin",
|
32 |
+
seed=random.randint(1, 9999999),
|
33 |
+
n_ctx=2048,
|
34 |
+
n_threads=3,
|
35 |
+
)
|
36 |
+
print("Model loaded.")
|
37 |
+
|
38 |
+
|
39 |
+
def generate(prompt, stop):
|
40 |
+
output = llm(
|
41 |
+
bytes(prompt, "utf-8").decode("unicode_escape"),
|
42 |
+
max_tokens=64,
|
43 |
+
temperature=0.75,
|
44 |
+
top_p=0.7,
|
45 |
+
stop=[bytes(stop, "utf-8").decode("unicode_escape")],
|
46 |
+
)
|
47 |
+
print(output)
|
48 |
+
return output["choices"][0]["text"]
|
49 |
+
|
50 |
+
|
51 |
+
app = gradio.Interface(fn=generate, inputs=["text", "text"], outputs="text")
|
52 |
+
app.launch(enable_queue=True, show_api=True)
|
convert.py
ADDED
@@ -0,0 +1,1149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Convert.py taken from https://github.com/ggerganov/llama.cpp
|
2 |
+
import argparse
|
3 |
+
import concurrent.futures
|
4 |
+
import copy
|
5 |
+
import enum
|
6 |
+
import faulthandler
|
7 |
+
import functools
|
8 |
+
import io
|
9 |
+
import itertools
|
10 |
+
import json
|
11 |
+
import math
|
12 |
+
import mmap
|
13 |
+
import pickle
|
14 |
+
import re
|
15 |
+
import signal
|
16 |
+
import struct
|
17 |
+
import sys
|
18 |
+
import zipfile
|
19 |
+
from abc import ABCMeta, abstractmethod
|
20 |
+
from dataclasses import dataclass
|
21 |
+
from pathlib import Path
|
22 |
+
from typing import (IO, TYPE_CHECKING, Any, Callable, Dict, Iterable, List,
|
23 |
+
Literal, Optional, Sequence, Tuple, TypeVar, Union)
|
24 |
+
|
25 |
+
import numpy as np
|
26 |
+
from sentencepiece import SentencePieceProcessor # type: ignore
|
27 |
+
|
28 |
+
if TYPE_CHECKING:
|
29 |
+
from typing_extensions import TypeAlias
|
30 |
+
|
31 |
+
if hasattr(faulthandler, 'register') and hasattr(signal, 'SIGUSR1'):
|
32 |
+
faulthandler.register(signal.SIGUSR1)
|
33 |
+
|
34 |
+
NDArray: 'TypeAlias' = 'np.ndarray[Any, Any]'
|
35 |
+
|
36 |
+
|
37 |
+
@dataclass(frozen=True)
|
38 |
+
class UnquantizedDataType:
|
39 |
+
name: str
|
40 |
+
|
41 |
+
|
42 |
+
DT_F16 = UnquantizedDataType('F16')
|
43 |
+
DT_F32 = UnquantizedDataType('F32')
|
44 |
+
DT_I32 = UnquantizedDataType('I32')
|
45 |
+
DT_BF16 = UnquantizedDataType('BF16')
|
46 |
+
|
47 |
+
|
48 |
+
@dataclass(frozen=True)
|
49 |
+
class QuantizedDataType:
|
50 |
+
groupsize: int
|
51 |
+
have_addends: bool
|
52 |
+
have_g_idx: bool
|
53 |
+
|
54 |
+
|
55 |
+
DT_Q4_0 = QuantizedDataType(groupsize=32, have_addends=False, have_g_idx=False)
|
56 |
+
DT_Q4_1 = QuantizedDataType(groupsize=32, have_addends=True, have_g_idx=False)
|
57 |
+
|
58 |
+
DataType = Union[UnquantizedDataType, QuantizedDataType]
|
59 |
+
|
60 |
+
DATA_TYPE_TO_FTYPE: Dict[DataType, int] = {
|
61 |
+
DT_F32: 0,
|
62 |
+
DT_F16: 1,
|
63 |
+
DT_Q4_0: 2,
|
64 |
+
DT_Q4_1: 3,
|
65 |
+
}
|
66 |
+
|
67 |
+
FTYPE_TO_DATA_TYPE: Dict[int, DataType] = \
|
68 |
+
{ftype: dtype for (dtype, ftype) in DATA_TYPE_TO_FTYPE.items()}
|
69 |
+
|
70 |
+
DATA_TYPE_TO_NUMPY: Dict[DataType, 'np.dtype[Any]'] = {
|
71 |
+
DT_F16: np.dtype(np.float16),
|
72 |
+
DT_F32: np.dtype(np.float32),
|
73 |
+
DT_I32: np.dtype(np.int32),
|
74 |
+
}
|
75 |
+
|
76 |
+
NUMPY_TYPE_TO_DATA_TYPE: Dict['np.dtype[Any]', DataType] = \
|
77 |
+
{dtype: data_type for (data_type, dtype) in DATA_TYPE_TO_NUMPY.items()}
|
78 |
+
|
79 |
+
|
80 |
+
class GGMLFileType(enum.Enum):
|
81 |
+
AllF32 = 0
|
82 |
+
MostlyF16 = 1 # except 1d tensors
|
83 |
+
MostlyQ4_0 = 2 # except 1d tensors
|
84 |
+
MostlyQ4_1 = 3 # except 1d tensors
|
85 |
+
PerLayerIsQ4_1 = 4 # but tok_embeddings.weight and output.weight are F16
|
86 |
+
|
87 |
+
def type_for_tensor(self, name: str, tensor: 'LazyTensor') -> DataType:
|
88 |
+
if len(tensor.shape) == 1:
|
89 |
+
# 1D tensors are always F32.
|
90 |
+
return DT_F32
|
91 |
+
elif self == GGMLFileType.AllF32:
|
92 |
+
return DT_F32
|
93 |
+
elif self == GGMLFileType.MostlyF16:
|
94 |
+
return DT_F16
|
95 |
+
elif self == GGMLFileType.MostlyQ4_0:
|
96 |
+
return DT_Q4_0
|
97 |
+
elif self == GGMLFileType.MostlyQ4_1:
|
98 |
+
return DT_Q4_1
|
99 |
+
elif self == GGMLFileType.PerLayerIsQ4_1:
|
100 |
+
if name in ('output.weight', 'tok_embeddings.weight'):
|
101 |
+
return DT_F16
|
102 |
+
else:
|
103 |
+
return DT_Q4_1
|
104 |
+
else:
|
105 |
+
raise ValueError(self)
|
106 |
+
|
107 |
+
|
108 |
+
def make_tensors_list() -> List[str]:
|
109 |
+
ret = [
|
110 |
+
'tok_embeddings.weight',
|
111 |
+
'norm.weight',
|
112 |
+
'output.weight',
|
113 |
+
]
|
114 |
+
for i in range(80): # maximum number of layer
|
115 |
+
ret += [
|
116 |
+
f'layers.{i}.attention.wq.weight',
|
117 |
+
f'layers.{i}.attention.wk.weight',
|
118 |
+
f'layers.{i}.attention.wv.weight',
|
119 |
+
f'layers.{i}.attention.wo.weight',
|
120 |
+
f'layers.{i}.attention_norm.weight',
|
121 |
+
f'layers.{i}.feed_forward.w1.weight',
|
122 |
+
f'layers.{i}.feed_forward.w2.weight',
|
123 |
+
f'layers.{i}.feed_forward.w3.weight',
|
124 |
+
f'layers.{i}.atttention_norm.weight',
|
125 |
+
f'layers.{i}.ffn_norm.weight',
|
126 |
+
]
|
127 |
+
return ret
|
128 |
+
|
129 |
+
|
130 |
+
TENSORS_LIST = make_tensors_list()
|
131 |
+
TENSORS_SET = set(TENSORS_LIST)
|
132 |
+
|
133 |
+
|
134 |
+
@dataclass
|
135 |
+
class Params:
|
136 |
+
n_vocab: int
|
137 |
+
n_embd: int
|
138 |
+
n_mult: int
|
139 |
+
n_head: int
|
140 |
+
n_layer: int
|
141 |
+
file_type: GGMLFileType
|
142 |
+
|
143 |
+
@staticmethod
|
144 |
+
def guessed(model: 'LazyModel', file_type: GGMLFileType) -> 'Params':
|
145 |
+
n_vocab, n_embd = model["tok_embeddings.weight"].shape
|
146 |
+
|
147 |
+
return Params(
|
148 |
+
n_vocab=n_vocab,
|
149 |
+
n_embd=n_embd,
|
150 |
+
n_mult=256,
|
151 |
+
n_head=n_embd // 128,
|
152 |
+
n_layer=next(i for i in itertools.count() if f"layers.{i}.attention.wq.weight" not in model),
|
153 |
+
file_type=file_type,
|
154 |
+
)
|
155 |
+
|
156 |
+
|
157 |
+
class SentencePieceVocab:
|
158 |
+
def __init__(self, fname_tokenizer: Path, fname_added_tokens: Optional[Path]) -> None:
|
159 |
+
self.sentencepiece_tokenizer = SentencePieceProcessor(str(fname_tokenizer))
|
160 |
+
added_tokens: Dict[str, int]
|
161 |
+
if fname_added_tokens is not None:
|
162 |
+
added_tokens = json.load(open(fname_added_tokens))
|
163 |
+
else:
|
164 |
+
added_tokens = {}
|
165 |
+
vocab_size: int = self.sentencepiece_tokenizer.vocab_size()
|
166 |
+
expected_ids = list(range(vocab_size, vocab_size + len(added_tokens)))
|
167 |
+
actual_ids = sorted(added_tokens.values())
|
168 |
+
if expected_ids != actual_ids:
|
169 |
+
raise Exception(f"Expected added token IDs to be sequential and start at {len(added_tokens)}; got {actual_ids}")
|
170 |
+
items = sorted(added_tokens.items(), key=lambda text_idx: text_idx[1])
|
171 |
+
self.added_tokens_list = [text for (text, idx) in items]
|
172 |
+
self.vocab_size_base: int = vocab_size
|
173 |
+
self.vocab_size: int = self.vocab_size_base + len(self.added_tokens_list)
|
174 |
+
self.fname_tokenizer = fname_tokenizer
|
175 |
+
self.fname_added_tokens = fname_added_tokens
|
176 |
+
|
177 |
+
def sentencepiece_tokens(self) -> Iterable[Tuple[bytes, float]]:
|
178 |
+
tokenizer = self.sentencepiece_tokenizer
|
179 |
+
for i in range(tokenizer.vocab_size()):
|
180 |
+
text: bytes
|
181 |
+
if tokenizer.is_unknown(i):
|
182 |
+
text = " \u2047 ".encode("utf-8")
|
183 |
+
elif tokenizer.is_control(i):
|
184 |
+
text = b""
|
185 |
+
elif tokenizer.is_byte(i):
|
186 |
+
piece = tokenizer.id_to_piece(i)
|
187 |
+
if len(piece) != 6:
|
188 |
+
raise Exception(f"Invalid token: {piece}")
|
189 |
+
byte_value = int(piece[3:-1], 16)
|
190 |
+
text = struct.pack("B", byte_value)
|
191 |
+
else:
|
192 |
+
text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode("utf-8")
|
193 |
+
score: float = tokenizer.get_score(i)
|
194 |
+
yield text, score
|
195 |
+
|
196 |
+
def added_tokens(self) -> Iterable[Tuple[bytes, float]]:
|
197 |
+
for text in self.added_tokens_list:
|
198 |
+
score = -1000.0
|
199 |
+
yield text.encode("utf-8"), score
|
200 |
+
|
201 |
+
def all_tokens(self) -> Iterable[Tuple[bytes, float]]:
|
202 |
+
yield from self.sentencepiece_tokens()
|
203 |
+
yield from self.added_tokens()
|
204 |
+
|
205 |
+
def __repr__(self) -> str:
|
206 |
+
return f"<SentencePieceVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>"
|
207 |
+
|
208 |
+
|
209 |
+
class GGMLVocab:
|
210 |
+
def __init__(self, tokens: List[Tuple[bytes, float]]):
|
211 |
+
self.tokens = tokens
|
212 |
+
self.vocab_size = len(tokens)
|
213 |
+
|
214 |
+
def all_tokens(self) -> Iterable[Tuple[bytes, float]]:
|
215 |
+
return self.tokens
|
216 |
+
|
217 |
+
def __repr__(self) -> str:
|
218 |
+
return f"<GGMLVocab with {self.vocab_size} tokens>"
|
219 |
+
|
220 |
+
|
221 |
+
Vocab = Union[SentencePieceVocab, GGMLVocab]
|
222 |
+
|
223 |
+
|
224 |
+
def permute(weights: NDArray, n_head: int) -> NDArray:
|
225 |
+
return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
|
226 |
+
.swapaxes(1, 2)
|
227 |
+
.reshape(weights.shape))
|
228 |
+
|
229 |
+
|
230 |
+
def dequantize_q4(qvalues_pack32: NDArray, scales: NDArray, addends: Optional[NDArray], g_idx: Optional[NDArray]) -> NDArray:
|
231 |
+
# First reinterpret each row from a list of int32s containing 8 values each
|
232 |
+
# to a list of uint8s containing 2 values each.
|
233 |
+
qvalues_pack8 = qvalues_pack32.view(np.uint8)
|
234 |
+
|
235 |
+
# Then split out the two values per int8 (which requires an actual
|
236 |
+
# conversion because numpy doesn't natively support int4s).
|
237 |
+
qvalues = np.zeros([qvalues_pack8.shape[0], qvalues_pack8.shape[1] * 2], dtype=np.uint8)
|
238 |
+
qvalues[:, 0::2] = qvalues_pack8 & 0xf
|
239 |
+
qvalues[:, 1::2] = qvalues_pack8 >> 4
|
240 |
+
|
241 |
+
assert addends is None or addends.shape == scales.shape
|
242 |
+
assert qvalues.shape[0] == scales.shape[0]
|
243 |
+
assert qvalues.shape[1] % scales.shape[1] == 0
|
244 |
+
if g_idx is None:
|
245 |
+
repeat_count = qvalues.shape[1] // scales.shape[1]
|
246 |
+
scales = scales[:, :, np.newaxis]
|
247 |
+
if addends is not None:
|
248 |
+
addends = addends[:, :, np.newaxis]
|
249 |
+
# Reshape so that the below computation broadcasts over scales and addends:
|
250 |
+
qvalues.shape = (qvalues.shape[0], scales.shape[1], int(repeat_count))
|
251 |
+
else:
|
252 |
+
# In this case the scale and addend is selected for each column by g_idx:
|
253 |
+
assert addends is not None
|
254 |
+
scales = scales[:, g_idx]
|
255 |
+
addends = addends[:, g_idx]
|
256 |
+
if addends is None:
|
257 |
+
# Q4_0
|
258 |
+
qvalues = qvalues.view(np.int8)
|
259 |
+
qvalues -= 8
|
260 |
+
# And do the actual 'value = scale * qvalue + addend' computation.
|
261 |
+
values = scales * qvalues
|
262 |
+
if addends is not None:
|
263 |
+
values += addends
|
264 |
+
if g_idx is None:
|
265 |
+
values.shape = (values.shape[0], values.shape[1] * values.shape[2])
|
266 |
+
return values
|
267 |
+
|
268 |
+
|
269 |
+
class Tensor(metaclass=ABCMeta):
|
270 |
+
data_type: DataType
|
271 |
+
|
272 |
+
@abstractmethod
|
273 |
+
def astype(self, data_type: DataType) -> 'Tensor': ...
|
274 |
+
@abstractmethod
|
275 |
+
def permute(self, n_head: int) -> 'Tensor': ...
|
276 |
+
@abstractmethod
|
277 |
+
def to_ggml(self) -> 'GGMLCompatibleTensor': ...
|
278 |
+
|
279 |
+
|
280 |
+
class UnquantizedTensor(Tensor):
|
281 |
+
def __init__(self, ndarray: NDArray) -> None:
|
282 |
+
assert isinstance(ndarray, np.ndarray)
|
283 |
+
self.ndarray = ndarray
|
284 |
+
self.data_type = NUMPY_TYPE_TO_DATA_TYPE[ndarray.dtype]
|
285 |
+
|
286 |
+
def astype(self, data_type: DataType) -> Tensor:
|
287 |
+
dtype = DATA_TYPE_TO_NUMPY[data_type]
|
288 |
+
return UnquantizedTensor(self.ndarray.astype(dtype))
|
289 |
+
|
290 |
+
def to_ggml(self) -> 'UnquantizedTensor':
|
291 |
+
return self
|
292 |
+
|
293 |
+
def permute(self, n_head: int) -> 'UnquantizedTensor':
|
294 |
+
return UnquantizedTensor(permute(self.ndarray, n_head))
|
295 |
+
|
296 |
+
|
297 |
+
def load_unquantized(lazy_tensor: 'LazyTensor', expected_dtype: Any = None, convert: bool = False) -> NDArray:
|
298 |
+
tensor = lazy_tensor.load()
|
299 |
+
assert isinstance(tensor, UnquantizedTensor)
|
300 |
+
|
301 |
+
# double-check:
|
302 |
+
actual_shape = list(tensor.ndarray.shape)
|
303 |
+
assert actual_shape == lazy_tensor.shape, (actual_shape, lazy_tensor.shape)
|
304 |
+
if expected_dtype is not None and expected_dtype != tensor.ndarray.dtype:
|
305 |
+
if convert:
|
306 |
+
tensor.ndarray = tensor.ndarray.astype(expected_dtype)
|
307 |
+
else:
|
308 |
+
raise ValueError(f'expected this tensor to have dtype {expected_dtype}, got {tensor.ndarray.dtype}')
|
309 |
+
|
310 |
+
return tensor.ndarray
|
311 |
+
|
312 |
+
|
313 |
+
class GGMLQuantizedTensor(Tensor):
|
314 |
+
data_type: QuantizedDataType
|
315 |
+
|
316 |
+
def __init__(self, ndarray: NDArray, shape: List[int], data_type: DataType) -> None:
|
317 |
+
rows, columns = shape
|
318 |
+
assert data_type in (DT_Q4_1, DT_Q4_0) # for now
|
319 |
+
assert isinstance(data_type, QuantizedDataType) # redundant, but mypy complains without this
|
320 |
+
assert columns % data_type.groupsize == 0
|
321 |
+
words_in_block = 6 if data_type == DT_Q4_1 else 5
|
322 |
+
self.ndarray = ndarray.view(dtype=np.uint32).reshape((rows, columns // data_type.groupsize, words_in_block))
|
323 |
+
self.shape = shape[:]
|
324 |
+
self.data_type = data_type
|
325 |
+
|
326 |
+
def astype(self, data_type: DataType) -> Tensor:
|
327 |
+
if data_type == self.data_type:
|
328 |
+
return self
|
329 |
+
scales = self.ndarray[:, :, 0].view(np.float32)
|
330 |
+
if self.data_type.have_addends:
|
331 |
+
addends = self.ndarray[:, :, 1].view(np.float32)
|
332 |
+
else:
|
333 |
+
addends = None
|
334 |
+
qweights = self.ndarray[:, :, -4:].reshape([self.shape[0], self.shape[1] // 8])
|
335 |
+
|
336 |
+
dq = dequantize_q4(qweights, scales, addends, g_idx=None)
|
337 |
+
return UnquantizedTensor(dq).astype(data_type)
|
338 |
+
|
339 |
+
def to_ggml(self) -> 'GGMLQuantizedTensor':
|
340 |
+
return self
|
341 |
+
|
342 |
+
def permute(self, n_head: int) -> 'GGMLQuantizedTensor':
|
343 |
+
return GGMLQuantizedTensor(permute(self.ndarray, n_head), self.shape, self.data_type)
|
344 |
+
|
345 |
+
|
346 |
+
GGMLCompatibleTensor = Union[UnquantizedTensor, GGMLQuantizedTensor]
|
347 |
+
|
348 |
+
|
349 |
+
class DeferredPermutedTensor(Tensor):
|
350 |
+
def __init__(self, base: Tensor, n_head: int) -> None:
|
351 |
+
self.base = base
|
352 |
+
self.n_head = n_head
|
353 |
+
self.data_type = self.base.data_type
|
354 |
+
|
355 |
+
def astype(self, data_type: DataType) -> Tensor:
|
356 |
+
return self.base.astype(data_type).permute(self.n_head)
|
357 |
+
|
358 |
+
def to_ggml(self) -> GGMLCompatibleTensor:
|
359 |
+
return self.base.to_ggml().permute(self.n_head)
|
360 |
+
|
361 |
+
def permute(self, n_head: int) -> Tensor:
|
362 |
+
raise Exception("shouldn't permute twice")
|
363 |
+
|
364 |
+
|
365 |
+
class GPTQForLLaMaQuantizedTensor(Tensor):
|
366 |
+
def __init__(self, model: 'LazyModel', namebase: str) -> None:
|
367 |
+
qweight = load_unquantized(model[f"{namebase}.qweight"], np.int32)
|
368 |
+
scales = load_unquantized(model[f"{namebase}.scales"], np.float32, convert=True)
|
369 |
+
|
370 |
+
bias = model.get(f"{namebase}.bias")
|
371 |
+
if bias is not None:
|
372 |
+
# Q4_1 does not support bias; good thing the bias is always all zeros.
|
373 |
+
assert not np.any(load_unquantized(bias))
|
374 |
+
|
375 |
+
if f"{namebase}.zeros" in model:
|
376 |
+
zeros = load_unquantized(model[f"{namebase}.zeros"], np.float32)
|
377 |
+
else:
|
378 |
+
qzeros = load_unquantized(model[f"{namebase}.qzeros"], np.int32)
|
379 |
+
assert qzeros.dtype == np.int32
|
380 |
+
zeros = dequantize_q4(qzeros, scales, scales, g_idx=None)
|
381 |
+
assert zeros.dtype == np.float32
|
382 |
+
|
383 |
+
assert zeros.shape == scales.shape
|
384 |
+
|
385 |
+
# Output is transposed compared to the input, and addends have their sign flipped.
|
386 |
+
# Scales and zeros similarly must be transposed but only for newer
|
387 |
+
# versions of GPTQ-for-LLaMa; the older versions can be identified by
|
388 |
+
# having shape (n_embd, 1).
|
389 |
+
qweight = qweight.T
|
390 |
+
if scales.shape[1] != 1:
|
391 |
+
scales = scales.T
|
392 |
+
zeros = zeros.T
|
393 |
+
|
394 |
+
# Output also has signs flipped for the addends.
|
395 |
+
self.qweight = qweight
|
396 |
+
self.scales = scales
|
397 |
+
self.addends = -zeros
|
398 |
+
|
399 |
+
self.g_idx: Optional[NDArray]
|
400 |
+
if f"{namebase}.g_idx" in model:
|
401 |
+
self.g_idx = load_unquantized(model[f"{namebase}.g_idx"], np.int32)
|
402 |
+
assert self.g_idx.shape == (qweight.shape[1] * 8,)
|
403 |
+
else:
|
404 |
+
self.g_idx = None
|
405 |
+
|
406 |
+
self.shape = [self.qweight.shape[0], self.qweight.shape[1] * 8]
|
407 |
+
self.data_type = QuantizedDataType(groupsize=self.groupsize(), have_addends=True,
|
408 |
+
have_g_idx=(self.g_idx is not None))
|
409 |
+
|
410 |
+
def inspect(self, row: int, col: int) -> None:
|
411 |
+
'''For debugging.'''
|
412 |
+
qweight = (self.qweight[row, col // 8] >> (4 * (col & 7))) & 0xf
|
413 |
+
if self.g_idx is not None:
|
414 |
+
group = self.g_idx[col]
|
415 |
+
else:
|
416 |
+
group = int(col // self.groupsize())
|
417 |
+
scale = self.scales[row, group]
|
418 |
+
addend = self.addends[row, group]
|
419 |
+
with np.printoptions(precision=None, suppress=True):
|
420 |
+
print(f'scale:{scale} addend:{addend} qweight:{qweight}')
|
421 |
+
print('possible values:', np.arange(16) * scale + addend)
|
422 |
+
print('actual value:', qweight * scale + addend)
|
423 |
+
|
424 |
+
def astype(self, data_type: DataType) -> Tensor:
|
425 |
+
if isinstance(data_type, QuantizedDataType):
|
426 |
+
assert self.g_idx is None and data_type.have_addends is True and data_type.have_g_idx is False
|
427 |
+
return self.regroup(data_type.groupsize)
|
428 |
+
|
429 |
+
dequantized = dequantize_q4(np.ascontiguousarray(self.qweight), self.scales, self.addends, self.g_idx)
|
430 |
+
return UnquantizedTensor(dequantized).astype(data_type)
|
431 |
+
|
432 |
+
def groupsize(self) -> int:
|
433 |
+
assert self.addends.shape == self.scales.shape
|
434 |
+
assert self.shape[1] % self.scales.shape[1] == 0
|
435 |
+
return self.shape[1] // self.scales.shape[1]
|
436 |
+
|
437 |
+
def regroup(self, new_groupsize: int = 32) -> 'GPTQForLLaMaQuantizedTensor':
|
438 |
+
# Old versions of GPTQ-for-LLaMa shared scales and addends between all the
|
439 |
+
# columns in a row. Newer versions share them between every set of N
|
440 |
+
# columns in a row, where N is the `groupsize` parameter, usually 128. The
|
441 |
+
# output format shares them between every set of 32 columns. To handle
|
442 |
+
# this, duplicate scales and addends for every smaller group.
|
443 |
+
# (In the above, 'row' and 'column' are in the sense of the output.)
|
444 |
+
assert self.g_idx is None
|
445 |
+
old_groupsize = self.groupsize()
|
446 |
+
assert old_groupsize >= new_groupsize and old_groupsize % new_groupsize == 0, old_groupsize
|
447 |
+
ret = copy.copy(self)
|
448 |
+
ret.addends = self.addends.repeat(old_groupsize // new_groupsize, axis=1)
|
449 |
+
ret.scales = self.scales.repeat(old_groupsize // new_groupsize, axis=1)
|
450 |
+
ret.data_type = QuantizedDataType(groupsize=new_groupsize, have_addends=True, have_g_idx=False)
|
451 |
+
return ret
|
452 |
+
|
453 |
+
def permute(self, n_head: int) -> Tensor:
|
454 |
+
return DeferredPermutedTensor(self, n_head)
|
455 |
+
|
456 |
+
def to_ggml(self) -> GGMLQuantizedTensor:
|
457 |
+
# The output format looks like this:
|
458 |
+
# For each row:
|
459 |
+
# For each group of 32 columns:
|
460 |
+
# - addend (float32, 4 bytes)
|
461 |
+
# - scale (float32, 4 bytes)
|
462 |
+
# - weights (int4 * 32, 16 bytes)
|
463 |
+
|
464 |
+
if self.groupsize() != 32:
|
465 |
+
raise Exception("should have been regrouped before converting to ggml")
|
466 |
+
|
467 |
+
# Since the output format is mixed between integers and floats, we have
|
468 |
+
# to hackily view the floats as int32s just so numpy will let us
|
469 |
+
# concatenate them.
|
470 |
+
addends_view = self.addends.view(dtype=np.int32)[:, :, np.newaxis]
|
471 |
+
scales_view = self.scales.view(dtype=np.int32)[:, :, np.newaxis]
|
472 |
+
|
473 |
+
# Split into groups of 4 columns (i.e. 32 columns of quantized data):
|
474 |
+
grouped = self.qweight.reshape([self.qweight.shape[0], self.qweight.shape[1] // 4, 4])
|
475 |
+
|
476 |
+
# And concatenate:
|
477 |
+
grouped = np.concatenate([scales_view, addends_view, grouped], axis=2, casting='no')
|
478 |
+
|
479 |
+
return GGMLQuantizedTensor(grouped, self.shape, DT_Q4_1)
|
480 |
+
|
481 |
+
|
482 |
+
@dataclass
|
483 |
+
class LazyTensor:
|
484 |
+
_load: Callable[[], Tensor]
|
485 |
+
shape: List[int]
|
486 |
+
data_type: DataType
|
487 |
+
description: str
|
488 |
+
|
489 |
+
def load(self) -> Tensor:
|
490 |
+
ret = self._load()
|
491 |
+
assert ret.data_type == self.data_type, (self.data_type, ret.data_type, self.description)
|
492 |
+
return ret
|
493 |
+
|
494 |
+
def astype(self, data_type: DataType) -> 'LazyTensor':
|
495 |
+
self.validate_conversion_to(data_type)
|
496 |
+
|
497 |
+
def load() -> Tensor:
|
498 |
+
return self.load().astype(data_type)
|
499 |
+
return LazyTensor(load, self.shape, data_type, f'convert({data_type}) {self.description}')
|
500 |
+
|
501 |
+
def validate_conversion_to(self, data_type: DataType) -> None:
|
502 |
+
if data_type == self.data_type:
|
503 |
+
return
|
504 |
+
if isinstance(data_type, QuantizedDataType):
|
505 |
+
if not isinstance(self.data_type, QuantizedDataType):
|
506 |
+
raise Exception(f"Can't turn an unquantized tensor into a quantized type ({data_type})")
|
507 |
+
if self.data_type.have_g_idx:
|
508 |
+
sys.stderr.write("Error: Input uses the newer GPTQ-for-LLaMa format (using g_idx), which is not yet natively supported by GGML. For now you can still convert this model by passing `--outtype f16` to dequantize, but that will result in a much larger output file for no quality benefit.\n")
|
509 |
+
sys.exit(1)
|
510 |
+
assert not data_type.have_g_idx and self.data_type.have_addends and data_type.have_addends
|
511 |
+
|
512 |
+
|
513 |
+
LazyModel = Dict[str, LazyTensor]
|
514 |
+
|
515 |
+
|
516 |
+
@dataclass
|
517 |
+
class ModelPlus:
|
518 |
+
model: LazyModel
|
519 |
+
paths: List[Path] # Where this was read from.
|
520 |
+
format: Literal['ggml', 'torch', 'safetensors']
|
521 |
+
vocab: Optional[Vocab] # For GGML models (which have vocab built in), the vocab.
|
522 |
+
|
523 |
+
|
524 |
+
def merge_sharded(models: List[LazyModel]) -> LazyModel:
|
525 |
+
# Original LLaMA models have each file contain one part of each tensor.
|
526 |
+
# Use a dict instead of a set to preserve order.
|
527 |
+
names = {name: None for model in models for name in model}
|
528 |
+
|
529 |
+
def convert(name: str) -> LazyTensor:
|
530 |
+
lazy_tensors: List[LazyTensor] = [model[name] for model in models]
|
531 |
+
if len(lazy_tensors) == 1:
|
532 |
+
# only one file; don't go through this procedure since there might
|
533 |
+
# be quantized tensors
|
534 |
+
return lazy_tensors[0]
|
535 |
+
if len(lazy_tensors[0].shape) == 1:
|
536 |
+
# the tensor is just duplicated in every file
|
537 |
+
return lazy_tensors[0]
|
538 |
+
if name.startswith('tok_embeddings.') or \
|
539 |
+
name.endswith('.attention.wo.weight') or \
|
540 |
+
name.endswith('.feed_forward.w2.weight'):
|
541 |
+
# split by columns
|
542 |
+
axis = 1
|
543 |
+
else:
|
544 |
+
# split by rows
|
545 |
+
axis = 0
|
546 |
+
concatenated_shape = list(lazy_tensors[0].shape)
|
547 |
+
concatenated_shape[axis] = sum(tensor.shape[axis] for tensor in lazy_tensors)
|
548 |
+
|
549 |
+
def load() -> UnquantizedTensor:
|
550 |
+
ndarrays = [load_unquantized(tensor) for tensor in lazy_tensors]
|
551 |
+
concatenated: NDArray = np.concatenate(ndarrays, axis=axis)
|
552 |
+
return UnquantizedTensor(concatenated)
|
553 |
+
description = 'concatenated[[' + '] | ['.join(lt.description for lt in lazy_tensors) + ']]'
|
554 |
+
return LazyTensor(load, concatenated_shape, lazy_tensors[0].data_type, description)
|
555 |
+
return {name: convert(name) for name in names}
|
556 |
+
|
557 |
+
|
558 |
+
def merge_multifile_models(models_plus: List[ModelPlus]) -> ModelPlus:
|
559 |
+
formats = set(mp.format for mp in models_plus)
|
560 |
+
assert len(formats) == 1, "different formats?"
|
561 |
+
format = formats.pop()
|
562 |
+
paths = [path for mp in models_plus for path in mp.paths]
|
563 |
+
# Use the first non-None vocab, if any.
|
564 |
+
try:
|
565 |
+
vocab = next(mp.vocab for mp in models_plus if mp.vocab is not None)
|
566 |
+
except StopIteration:
|
567 |
+
vocab = None
|
568 |
+
|
569 |
+
if any("model.embed_tokens.weight" in mp.model for mp in models_plus):
|
570 |
+
# Transformers models put different tensors in different files, but
|
571 |
+
# don't split indivdual tensors between files.
|
572 |
+
model: LazyModel = {}
|
573 |
+
for mp in models_plus:
|
574 |
+
model.update(mp.model)
|
575 |
+
else:
|
576 |
+
model = merge_sharded([mp.model for mp in models_plus])
|
577 |
+
|
578 |
+
return ModelPlus(model, paths, format, vocab)
|
579 |
+
|
580 |
+
|
581 |
+
def permute_lazy(lazy_tensor: LazyTensor, n_head: int) -> LazyTensor:
|
582 |
+
def load() -> Tensor:
|
583 |
+
return lazy_tensor.load().permute(n_head)
|
584 |
+
return LazyTensor(load, lazy_tensor.shape, lazy_tensor.data_type, f'permute({n_head}) ' + lazy_tensor.description)
|
585 |
+
|
586 |
+
|
587 |
+
def convert_transformers_to_orig(model: LazyModel) -> LazyModel:
|
588 |
+
out: LazyModel = {}
|
589 |
+
out["tok_embeddings.weight"] = model["model.embed_tokens.weight"]
|
590 |
+
out["norm.weight"] = model["model.norm.weight"]
|
591 |
+
out["output.weight"] = model["lm_head.weight"]
|
592 |
+
|
593 |
+
n_head = model["model.layers.0.self_attn.q_proj.weight"].shape[1] // 128
|
594 |
+
for i in itertools.count():
|
595 |
+
if f"model.layers.{i}.self_attn.q_proj.weight" not in model:
|
596 |
+
break
|
597 |
+
out[f"layers.{i}.attention.wq.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.q_proj.weight"], n_head)
|
598 |
+
out[f"layers.{i}.attention.wk.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.k_proj.weight"], n_head)
|
599 |
+
out[f"layers.{i}.attention.wv.weight"] = model[f"model.layers.{i}.self_attn.v_proj.weight"]
|
600 |
+
out[f"layers.{i}.attention.wo.weight"] = model[f"model.layers.{i}.self_attn.o_proj.weight"]
|
601 |
+
|
602 |
+
out[f"layers.{i}.feed_forward.w1.weight"] = model[f"model.layers.{i}.mlp.gate_proj.weight"]
|
603 |
+
out[f"layers.{i}.feed_forward.w2.weight"] = model[f"model.layers.{i}.mlp.down_proj.weight"]
|
604 |
+
out[f"layers.{i}.feed_forward.w3.weight"] = model[f"model.layers.{i}.mlp.up_proj.weight"]
|
605 |
+
|
606 |
+
out[f"layers.{i}.attention_norm.weight"] = model[f"model.layers.{i}.input_layernorm.weight"]
|
607 |
+
out[f"layers.{i}.ffn_norm.weight"] = model[f"model.layers.{i}.post_attention_layernorm.weight"]
|
608 |
+
return out
|
609 |
+
|
610 |
+
|
611 |
+
def handle_quantization(model: LazyModel) -> LazyModel:
|
612 |
+
'''Convert a model with entries for 'foo.qweight', 'foo.scales', etc.
|
613 |
+
(which resolve to UnquantizedTensors with the raw data) to one with entries
|
614 |
+
for 'foo.weight' (which resolve to QuantizedTensors).
|
615 |
+
'''
|
616 |
+
def convert(name: str) -> Tuple[str, LazyTensor]:
|
617 |
+
if name.endswith(".qweight"):
|
618 |
+
namebase = name.rsplit('.', 1)[0]
|
619 |
+
orig_name = namebase + ".weight"
|
620 |
+
|
621 |
+
lazy_tensor = model[name]
|
622 |
+
assert len(lazy_tensor.shape) == 2
|
623 |
+
real_shape = [lazy_tensor.shape[1], lazy_tensor.shape[0] * 8]
|
624 |
+
|
625 |
+
# Calculate type. This replicates the logic in
|
626 |
+
# GPTQForLLaMaQuantizedTensor (which is executed when the modelis
|
627 |
+
# actually loaded).
|
628 |
+
lazy_scales = model[f"{namebase}.scales"]
|
629 |
+
scales_width = 1 if lazy_scales.shape[1] == 1 else lazy_scales.shape[0]
|
630 |
+
assert real_shape[1] % scales_width == 0
|
631 |
+
groupsize = real_shape[1] // scales_width
|
632 |
+
have_g_idx = f"{namebase}.g_idx" in model
|
633 |
+
data_type = QuantizedDataType(groupsize=groupsize, have_addends=True, have_g_idx=have_g_idx)
|
634 |
+
|
635 |
+
def load() -> Tensor:
|
636 |
+
return GPTQForLLaMaQuantizedTensor(model, namebase)
|
637 |
+
|
638 |
+
return (orig_name, LazyTensor(load, real_shape, data_type, '[quantized]'))
|
639 |
+
else:
|
640 |
+
return (name, model[name])
|
641 |
+
return dict(convert(name) for name in model)
|
642 |
+
|
643 |
+
# Functionality that simulates `torch.load` but where individual tensors are
|
644 |
+
# only loaded into memory on demand, not all at once.
|
645 |
+
# PyTorch can't do this natively as of time of writing:
|
646 |
+
# - https://github.com/pytorch/pytorch/issues/64327
|
647 |
+
# This allows us to de-shard without multiplying RAM usage, and also
|
648 |
+
# conveniently drops the PyTorch dependency (though we still need numpy).
|
649 |
+
|
650 |
+
|
651 |
+
@dataclass
|
652 |
+
class LazyStorageKind:
|
653 |
+
data_type: DataType
|
654 |
+
|
655 |
+
|
656 |
+
@dataclass
|
657 |
+
class LazyStorage:
|
658 |
+
load: Callable[[int, int], NDArray]
|
659 |
+
kind: LazyStorageKind
|
660 |
+
description: str
|
661 |
+
|
662 |
+
|
663 |
+
class LazyUnpickler(pickle.Unpickler):
|
664 |
+
def __init__(self, fp: IO[bytes], data_base_path: str, zip_file: zipfile.ZipFile):
|
665 |
+
super().__init__(fp)
|
666 |
+
self.data_base_path = data_base_path
|
667 |
+
self.zip_file = zip_file
|
668 |
+
|
669 |
+
def persistent_load(self, pid: Any) -> Any:
|
670 |
+
assert pid[0] == 'storage'
|
671 |
+
assert isinstance(pid[1], LazyStorageKind)
|
672 |
+
data_type = pid[1].data_type
|
673 |
+
filename_stem = pid[2]
|
674 |
+
filename = self.data_base_path + '/' + filename_stem
|
675 |
+
info = self.zip_file.getinfo(filename)
|
676 |
+
|
677 |
+
def load(offset: int, elm_count: int) -> NDArray:
|
678 |
+
dtype = DATA_TYPE_TO_NUMPY.get(data_type)
|
679 |
+
if dtype is None:
|
680 |
+
raise Exception("tensor stored in unsupported format")
|
681 |
+
fp = self.zip_file.open(info)
|
682 |
+
fp.seek(offset * dtype.itemsize)
|
683 |
+
size = elm_count * dtype.itemsize
|
684 |
+
data = fp.read(size)
|
685 |
+
assert len(data) == size
|
686 |
+
return np.frombuffer(data, dtype)
|
687 |
+
description = f'storage data_type={data_type} path-in-zip={filename} path={self.zip_file.filename}'
|
688 |
+
return LazyStorage(load=load, kind=pid[1], description=description)
|
689 |
+
|
690 |
+
def lazy_rebuild_tensor_v2(storage: Any, storage_offset: Any, size: Any, stride: Any, # pyright: ignore[reportSelfClsParameterName]
|
691 |
+
requires_grad: Any, backward_hooks: Any, metadata: Any = None) -> LazyTensor:
|
692 |
+
assert isinstance(storage, LazyStorage)
|
693 |
+
|
694 |
+
def load() -> UnquantizedTensor:
|
695 |
+
elm_count = stride[0] * size[0]
|
696 |
+
return UnquantizedTensor(storage.load(storage_offset, elm_count).reshape(size))
|
697 |
+
description = f'pickled storage_offset={storage_offset} in {storage.description}'
|
698 |
+
return LazyTensor(load, list(size), storage.kind.data_type, description)
|
699 |
+
|
700 |
+
CLASSES: Dict[Any, Any] = {
|
701 |
+
('torch._utils', '_rebuild_tensor_v2'): lazy_rebuild_tensor_v2,
|
702 |
+
('torch', 'BFloat16Storage'): LazyStorageKind(DT_BF16),
|
703 |
+
('torch', 'HalfStorage'): LazyStorageKind(DT_F16),
|
704 |
+
('torch', 'FloatStorage'): LazyStorageKind(DT_F32),
|
705 |
+
('torch', 'IntStorage'): LazyStorageKind(DT_I32),
|
706 |
+
}
|
707 |
+
|
708 |
+
def find_class(self, module: str, name: str) -> Any:
|
709 |
+
if not module.startswith('torch'):
|
710 |
+
return super().find_class(module, name)
|
711 |
+
return self.CLASSES[(module, name)]
|
712 |
+
|
713 |
+
|
714 |
+
def lazy_load_torch_file(outer_fp: IO[bytes], path: Path) -> ModelPlus:
|
715 |
+
zf = zipfile.ZipFile(outer_fp)
|
716 |
+
pickle_paths = [name for name in zf.namelist() if name.endswith('.pkl')]
|
717 |
+
assert len(pickle_paths) == 1, pickle_paths
|
718 |
+
pickle_fp = zf.open(pickle_paths[0], 'r')
|
719 |
+
unpickler = LazyUnpickler(pickle_fp,
|
720 |
+
data_base_path=pickle_paths[0][:-4],
|
721 |
+
zip_file=zf)
|
722 |
+
model = unpickler.load()
|
723 |
+
as_dict = dict(model.items())
|
724 |
+
return ModelPlus(model=as_dict, paths=[path], format='torch', vocab=None)
|
725 |
+
|
726 |
+
|
727 |
+
SAFETENSORS_DATA_TYPES: Dict[str, DataType] = {
|
728 |
+
'F16': DT_F16,
|
729 |
+
'F32': DT_F32,
|
730 |
+
'I32': DT_I32,
|
731 |
+
}
|
732 |
+
|
733 |
+
|
734 |
+
def lazy_load_safetensors_file(fp: IO[bytes], path: Path) -> ModelPlus:
|
735 |
+
header_size, = struct.unpack('<Q', fp.read(8))
|
736 |
+
header: Dict[str, Dict[str, Any]] = json.loads(fp.read(header_size))
|
737 |
+
# Use mmap for the actual data to avoid race conditions with the file offset.
|
738 |
+
mapped = memoryview(mmap.mmap(fp.fileno(), 0, access=mmap.ACCESS_READ))
|
739 |
+
byte_buf = mapped[8 + header_size:]
|
740 |
+
|
741 |
+
def convert(info: Dict[str, Any]) -> LazyTensor:
|
742 |
+
data_type = SAFETENSORS_DATA_TYPES[info['dtype']]
|
743 |
+
numpy_dtype = DATA_TYPE_TO_NUMPY[data_type]
|
744 |
+
shape: List[int] = info['shape']
|
745 |
+
begin, end = info['data_offsets']
|
746 |
+
assert 0 <= begin <= end <= len(byte_buf)
|
747 |
+
assert end - begin == math.prod(shape) * numpy_dtype.itemsize
|
748 |
+
buf = byte_buf[begin:end]
|
749 |
+
|
750 |
+
def load() -> UnquantizedTensor:
|
751 |
+
return UnquantizedTensor(np.frombuffer(buf, dtype=numpy_dtype).reshape(shape))
|
752 |
+
description = f'safetensors begin={begin} end={end} type={data_type} path={path}'
|
753 |
+
return LazyTensor(load, shape, data_type, description)
|
754 |
+
model = {name: convert(info) for (name, info) in header.items()}
|
755 |
+
return ModelPlus(model=model, paths=[path], format='safetensors', vocab=None)
|
756 |
+
|
757 |
+
|
758 |
+
def must_read(fp: IO[bytes], length: int) -> bytes:
|
759 |
+
ret = fp.read(length)
|
760 |
+
if len(ret) < length:
|
761 |
+
raise Exception("unexpectedly reached end of file")
|
762 |
+
return ret
|
763 |
+
|
764 |
+
|
765 |
+
def lazy_load_ggml_file(fp: io.BufferedReader, path: Path) -> ModelPlus:
|
766 |
+
magic = must_read(fp, 4)[::-1]
|
767 |
+
if magic in (b'ggmf', b'ggjt'):
|
768 |
+
version, = struct.unpack("i", must_read(fp, 4))
|
769 |
+
assert version == 1
|
770 |
+
else:
|
771 |
+
assert magic == b'ggml'
|
772 |
+
version = None
|
773 |
+
n_vocab, n_embd, n_mult, n_head, n_layer, rot, file_type = struct.unpack('<7i', must_read(fp, 28))
|
774 |
+
|
775 |
+
tokens: List[Tuple[bytes, float]] = []
|
776 |
+
for i in range(n_vocab):
|
777 |
+
if i == 32000:
|
778 |
+
# HACK: GPT4All messed with the format without changing the magic
|
779 |
+
# number. Specifically, they changed the vocab section to contain
|
780 |
+
# `n_vocab - 1` tokens instead of `n_vocab` (i.e. omitting the
|
781 |
+
# extra pad token). Try to detect if we're reading a file like
|
782 |
+
# this.
|
783 |
+
orig_pos = fp.tell()
|
784 |
+
fp.seek(20, io.SEEK_CUR)
|
785 |
+
is_gpt4all = fp.read(21) == b'tok_embeddings.weight'
|
786 |
+
fp.seek(orig_pos)
|
787 |
+
if is_gpt4all:
|
788 |
+
break
|
789 |
+
|
790 |
+
length, = struct.unpack("i", must_read(fp, 4))
|
791 |
+
text = must_read(fp, length)
|
792 |
+
if magic != b'ggml':
|
793 |
+
score, = struct.unpack("f", must_read(fp, 4))
|
794 |
+
tokens.append((text, score))
|
795 |
+
vocab = GGMLVocab(tokens) if magic != b'ggml' else None
|
796 |
+
|
797 |
+
model: LazyModel = {}
|
798 |
+
# Use mmap for the actual data to avoid race conditions with the file offset.
|
799 |
+
off = fp.raw.tell()
|
800 |
+
mapped = memoryview(mmap.mmap(fp.fileno(), 0, access=mmap.ACCESS_READ))
|
801 |
+
fp.raw.seek(off) # needed on Windows
|
802 |
+
|
803 |
+
def read_tensor() -> None: # this is a function so that variables captured in `load` don't change
|
804 |
+
shape_len, name_len, ftype = struct.unpack("iii", must_read(fp, 12))
|
805 |
+
assert 0 <= shape_len <= 3
|
806 |
+
shape: List[int] = list(struct.unpack(f"{shape_len}i", must_read(fp, 4 * shape_len)))
|
807 |
+
shape = shape[::-1]
|
808 |
+
name = must_read(fp, name_len).decode('utf-8')
|
809 |
+
data_type = FTYPE_TO_DATA_TYPE[ftype]
|
810 |
+
|
811 |
+
if magic == b'ggjt':
|
812 |
+
fp.seek((fp.tell() + 31) & -32)
|
813 |
+
|
814 |
+
if data_type == DT_Q4_1:
|
815 |
+
# See GPTQForLLaMaQuantizedTensor.ggml_ndarray()
|
816 |
+
size = 24 * (shape[1] // 32) * shape[0]
|
817 |
+
elif data_type == DT_Q4_0:
|
818 |
+
size = 20 * (shape[1] // 32) * shape[0]
|
819 |
+
else:
|
820 |
+
numpy_dtype = DATA_TYPE_TO_NUMPY[data_type]
|
821 |
+
elm_count = math.prod(shape)
|
822 |
+
size = elm_count * numpy_dtype.itemsize
|
823 |
+
offset = fp.tell()
|
824 |
+
buf = mapped[offset:offset+size]
|
825 |
+
fp.seek(size, io.SEEK_CUR)
|
826 |
+
|
827 |
+
def load() -> Tensor:
|
828 |
+
if isinstance(data_type, QuantizedDataType):
|
829 |
+
ndarray = np.frombuffer(buf, dtype=np.uint32)
|
830 |
+
return GGMLQuantizedTensor(ndarray, shape, data_type)
|
831 |
+
else:
|
832 |
+
return UnquantizedTensor(np.frombuffer(buf, dtype=numpy_dtype).reshape(shape))
|
833 |
+
description = f'ggml offset={offset} type={data_type} path={path}'
|
834 |
+
model[name] = LazyTensor(load, shape, data_type, description)
|
835 |
+
|
836 |
+
while fp.read(1) != b'':
|
837 |
+
fp.seek(-1, io.SEEK_CUR)
|
838 |
+
read_tensor()
|
839 |
+
|
840 |
+
return ModelPlus(model=model, paths=[path], format='ggml', vocab=vocab)
|
841 |
+
|
842 |
+
|
843 |
+
@functools.lru_cache(maxsize=None)
|
844 |
+
def lazy_load_file(path: Path) -> ModelPlus:
|
845 |
+
fp = open(path, 'rb')
|
846 |
+
first8 = fp.read(8)
|
847 |
+
fp.seek(0)
|
848 |
+
if first8[:2] == b'PK':
|
849 |
+
# A zip file, i.e. PyTorch format
|
850 |
+
return lazy_load_torch_file(fp, path)
|
851 |
+
elif first8[2:4] == b'gg':
|
852 |
+
# GGML format
|
853 |
+
return lazy_load_ggml_file(fp, path)
|
854 |
+
elif struct.unpack('<Q', first8)[0] < 16 * 1024 * 1024:
|
855 |
+
# Probably safetensors
|
856 |
+
return lazy_load_safetensors_file(fp, path)
|
857 |
+
else:
|
858 |
+
raise ValueError(f"unknown format: {path}")
|
859 |
+
|
860 |
+
|
861 |
+
In = TypeVar('In')
|
862 |
+
Out = TypeVar('Out')
|
863 |
+
|
864 |
+
|
865 |
+
def bounded_parallel_map(func: Callable[[In], Out], iterable: Iterable[In], concurrency: int) -> Iterable[Out]:
|
866 |
+
'''Parallel map, but with backpressure. If the caller doesn't call `next`
|
867 |
+
fast enough, this will stop calling `func` at some point rather than
|
868 |
+
letting results pile up in memory. Specifically, there is a max of one
|
869 |
+
output value buffered per thread.'''
|
870 |
+
with concurrent.futures.ThreadPoolExecutor() as executor:
|
871 |
+
futures: List[concurrent.futures.Future[Out]] = []
|
872 |
+
items_rev = list(iterable)[::-1]
|
873 |
+
for i in range(min(concurrency, len(items_rev))):
|
874 |
+
futures.append(executor.submit(func, items_rev.pop()))
|
875 |
+
while futures:
|
876 |
+
result = futures.pop(0).result()
|
877 |
+
if items_rev:
|
878 |
+
futures.append(executor.submit(func, items_rev.pop()))
|
879 |
+
yield result
|
880 |
+
|
881 |
+
|
882 |
+
def check_vocab_size(params: Params, vocab: Vocab) -> None:
|
883 |
+
if params.n_vocab != vocab.vocab_size:
|
884 |
+
# GGMLVocab comes from the same file as the model so shouldn't mismatch:
|
885 |
+
assert isinstance(vocab, SentencePieceVocab)
|
886 |
+
if params.n_vocab == vocab.vocab_size_base:
|
887 |
+
print("Ignoring added_tokens.json since model matches vocab size without it.")
|
888 |
+
vocab.added_tokens_list = []
|
889 |
+
vocab.vocab_size = vocab.vocab_size_base
|
890 |
+
return
|
891 |
+
msg = f"Vocab size mismatch (model has {params.n_vocab}, but {vocab.fname_tokenizer}"
|
892 |
+
if vocab.fname_added_tokens is not None:
|
893 |
+
msg += f" combined with {vocab.fname_added_tokens}"
|
894 |
+
msg += f" has {vocab.vocab_size})."
|
895 |
+
if vocab.vocab_size < params.n_vocab < vocab.vocab_size + 20 and vocab.fname_added_tokens is None:
|
896 |
+
msg += f" Most likely you are missing added_tokens.json (should be in {vocab.fname_tokenizer.parent})."
|
897 |
+
raise Exception(msg)
|
898 |
+
|
899 |
+
|
900 |
+
class OutputFile:
|
901 |
+
def __init__(self, fname_out: Path) -> None:
|
902 |
+
self.fout = open(fname_out, "wb")
|
903 |
+
|
904 |
+
def write_file_header(self, params: Params) -> None:
|
905 |
+
self.fout.write(b"ggjt"[::-1]) # magic
|
906 |
+
values = [
|
907 |
+
1, # file version
|
908 |
+
params.n_vocab,
|
909 |
+
params.n_embd,
|
910 |
+
params.n_mult,
|
911 |
+
params.n_head,
|
912 |
+
params.n_layer,
|
913 |
+
params.n_embd // params.n_head, # rot (obsolete)
|
914 |
+
params.file_type.value,
|
915 |
+
]
|
916 |
+
self.fout.write(struct.pack("i" * len(values), *values))
|
917 |
+
|
918 |
+
def write_tensor_header(self, name: str, shape: Sequence[int], data_type: DataType) -> None:
|
919 |
+
sname = name.encode('utf-8')
|
920 |
+
self.fout.write(struct.pack("iii", len(shape), len(sname), DATA_TYPE_TO_FTYPE[data_type]))
|
921 |
+
self.fout.write(struct.pack("i" * len(shape), *shape[::-1]))
|
922 |
+
self.fout.write(sname)
|
923 |
+
self.fout.seek((self.fout.tell() + 31) & -32)
|
924 |
+
|
925 |
+
def write_vocab(self, vocab: Vocab) -> None:
|
926 |
+
for text, score in vocab.all_tokens():
|
927 |
+
self.fout.write(struct.pack("i", len(text)))
|
928 |
+
self.fout.write(text)
|
929 |
+
self.fout.write(struct.pack("f", score))
|
930 |
+
|
931 |
+
@staticmethod
|
932 |
+
def write_vocab_only(fname_out: Path, vocab: Vocab) -> None:
|
933 |
+
of = OutputFile(fname_out)
|
934 |
+
params = Params(n_vocab=vocab.vocab_size, n_embd=0, n_mult=0,
|
935 |
+
n_head=1, n_layer=0, file_type=GGMLFileType.AllF32)
|
936 |
+
of = OutputFile(fname_out)
|
937 |
+
of.write_file_header(params)
|
938 |
+
of.write_vocab(vocab)
|
939 |
+
of.fout.close()
|
940 |
+
|
941 |
+
@staticmethod
|
942 |
+
def write_all(fname_out: Path, params: Params, model: LazyModel, vocab: Vocab) -> None:
|
943 |
+
check_vocab_size(params, vocab)
|
944 |
+
of = OutputFile(fname_out)
|
945 |
+
of.write_file_header(params)
|
946 |
+
print("Writing vocab...")
|
947 |
+
of.write_vocab(vocab)
|
948 |
+
|
949 |
+
def do_item(item: Tuple[str, LazyTensor]) -> NDArray:
|
950 |
+
name, lazy_tensor = item
|
951 |
+
return lazy_tensor.load().to_ggml().ndarray
|
952 |
+
|
953 |
+
ndarrays = bounded_parallel_map(do_item, model.items(), concurrency=8)
|
954 |
+
for i, ((name, lazy_tensor), ndarray) in enumerate(zip(model.items(), ndarrays)):
|
955 |
+
size = ' x '.join(f"{dim:6d}" for dim in lazy_tensor.shape)
|
956 |
+
padi = len(str(len(model)))
|
957 |
+
print(f"[{i+1:{padi}d}/{len(model)}] Writing tensor {name:38s} | size {size:16} | type {lazy_tensor.data_type}")
|
958 |
+
of.write_tensor_header(name, lazy_tensor.shape, lazy_tensor.data_type)
|
959 |
+
ndarray.tofile(of.fout)
|
960 |
+
of.fout.close()
|
961 |
+
|
962 |
+
|
963 |
+
def pick_output_type(model: LazyModel, output_type_str: Optional[str]) -> GGMLFileType:
|
964 |
+
wq_type = model["layers.0.attention.wq.weight"].data_type
|
965 |
+
if output_type_str == "f32" or (output_type_str is None and wq_type == DT_F32):
|
966 |
+
return GGMLFileType.AllF32
|
967 |
+
if output_type_str == "f16" or (output_type_str is None and wq_type == DT_F16):
|
968 |
+
return GGMLFileType.MostlyF16
|
969 |
+
if output_type_str == "q4_1" or (output_type_str is None and isinstance(wq_type, QuantizedDataType) and
|
970 |
+
wq_type.have_addends):
|
971 |
+
if isinstance(model["output.weight"].data_type, QuantizedDataType):
|
972 |
+
return GGMLFileType.MostlyQ4_1
|
973 |
+
else:
|
974 |
+
return GGMLFileType.PerLayerIsQ4_1
|
975 |
+
if output_type_str == "q4_0" or (output_type_str is None and isinstance(wq_type, QuantizedDataType)):
|
976 |
+
return GGMLFileType.MostlyQ4_0
|
977 |
+
name_to_type = {name: lazy_tensor.data_type for (name, lazy_tensor) in model.items()}
|
978 |
+
raise Exception(f"Unexpected combination of types: {name_to_type}")
|
979 |
+
|
980 |
+
|
981 |
+
def do_necessary_conversions(model: LazyModel) -> LazyModel:
|
982 |
+
model = handle_quantization(model)
|
983 |
+
|
984 |
+
if "lm_head.weight" in model:
|
985 |
+
model = convert_transformers_to_orig(model)
|
986 |
+
model = filter_and_sort_tensors(model)
|
987 |
+
|
988 |
+
return model
|
989 |
+
|
990 |
+
|
991 |
+
def convert_to_output_type(model: LazyModel, output_type: GGMLFileType) -> LazyModel:
|
992 |
+
return {name: tensor.astype(output_type.type_for_tensor(name, tensor))
|
993 |
+
for (name, tensor) in model.items()}
|
994 |
+
|
995 |
+
|
996 |
+
def nth_multifile_path(path: Path, n: int) -> Optional[Path]:
|
997 |
+
'''Given any path belonging to a multi-file model (e.g. foo.bin.1), return
|
998 |
+
the nth path in the model.
|
999 |
+
'''
|
1000 |
+
# Support the following patterns:
|
1001 |
+
patterns: List[Tuple[str, str]] = [
|
1002 |
+
# - x.00.pth, x.01.pth, etc.
|
1003 |
+
(r'\.[0-9]{2}\.pth$', f'.{n:02}.pth'),
|
1004 |
+
# - x-00001-of-00002.bin, x-00002-of-00002.bin, etc.
|
1005 |
+
(r'-[0-9]{5}-of-(.*)$', fr'-{n:05}-of-\1'),
|
1006 |
+
# x.bin, x.bin.1, etc.
|
1007 |
+
(r'(\.[0-9]+)?$', r'\1' if n == 0 else fr'\1.{n}')
|
1008 |
+
]
|
1009 |
+
for regex, replacement in patterns:
|
1010 |
+
if re.search(regex, path.name):
|
1011 |
+
new_path = path.with_name(re.sub(regex, replacement, path.name))
|
1012 |
+
if new_path.exists():
|
1013 |
+
return new_path
|
1014 |
+
return None
|
1015 |
+
|
1016 |
+
|
1017 |
+
def find_multifile_paths(path: Path) -> List[Path]:
|
1018 |
+
'''Given any path belonging to a multi-file model (e.g. foo.bin.1), return
|
1019 |
+
the whole list of paths in the model.
|
1020 |
+
'''
|
1021 |
+
ret: List[Path] = []
|
1022 |
+
for i in itertools.count():
|
1023 |
+
nth_path = nth_multifile_path(path, i)
|
1024 |
+
if nth_path is None:
|
1025 |
+
break
|
1026 |
+
ret.append(nth_path)
|
1027 |
+
if not ret:
|
1028 |
+
# No matches. This should only happen if the file was named, e.g.,
|
1029 |
+
# foo.0, and there was no file named foo. Oh well, try to process it
|
1030 |
+
# as a single file.
|
1031 |
+
return [path]
|
1032 |
+
return ret
|
1033 |
+
|
1034 |
+
|
1035 |
+
def load_some_model(path: Path) -> ModelPlus:
|
1036 |
+
'''Load a model of any supported format.'''
|
1037 |
+
# Be extra-friendly and accept either a file or a directory:
|
1038 |
+
if path.is_dir():
|
1039 |
+
globs = ["consolidated.00.pth", "pytorch_model-00001-of-*.bin", "*.pt"]
|
1040 |
+
files = [file for glob in globs for file in path.glob(glob)]
|
1041 |
+
if not files:
|
1042 |
+
# Try GGML too, but with lower priority, since if both a non-GGML
|
1043 |
+
# model and a GGML model exist in the same directory, we assume the
|
1044 |
+
# latter was converted from the former.
|
1045 |
+
files = list(path.glob("ggml-model*.bin*"))
|
1046 |
+
if not files:
|
1047 |
+
raise Exception(f"Can't find model in directory {path}")
|
1048 |
+
if len(files) > 1:
|
1049 |
+
raise Exception(f"Found multiple models in {path}, not sure which to pick: {files}")
|
1050 |
+
path = files[0]
|
1051 |
+
|
1052 |
+
paths = find_multifile_paths(path)
|
1053 |
+
models_plus: List[ModelPlus] = []
|
1054 |
+
for path in paths:
|
1055 |
+
print(f"Loading model file {path}")
|
1056 |
+
models_plus.append(lazy_load_file(path))
|
1057 |
+
|
1058 |
+
model_plus = merge_multifile_models(models_plus)
|
1059 |
+
return model_plus
|
1060 |
+
|
1061 |
+
|
1062 |
+
def filter_and_sort_tensors(model: LazyModel) -> LazyModel:
|
1063 |
+
return {name: model[name] for name in TENSORS_LIST if name in model}
|
1064 |
+
|
1065 |
+
|
1066 |
+
def load_vocab(path: Path) -> SentencePieceVocab:
|
1067 |
+
# Be extra-friendly and accept either a file or a directory. Also, if it's
|
1068 |
+
# a directory, it might be the model directory, and tokenizer.model might
|
1069 |
+
# be in the parent of that.
|
1070 |
+
if path.is_dir():
|
1071 |
+
path2 = path / "tokenizer.model"
|
1072 |
+
# Use `.parent` instead of /.. to handle the symlink case better.
|
1073 |
+
path3 = path.parent / "tokenizer.model"
|
1074 |
+
if path2.exists():
|
1075 |
+
path = path2
|
1076 |
+
elif path3.exists():
|
1077 |
+
path = path3
|
1078 |
+
else:
|
1079 |
+
raise FileNotFoundError(f"Could not find tokenizer.model in {path} or its parent; if it's in another directory, pass the directory as --vocab-dir")
|
1080 |
+
added_tokens_path = path.parent / "added_tokens.json"
|
1081 |
+
print(f"Loading vocab file {path}")
|
1082 |
+
return SentencePieceVocab(path, added_tokens_path if added_tokens_path.exists() else None)
|
1083 |
+
|
1084 |
+
|
1085 |
+
def default_outfile(model_paths: List[Path], params: Params) -> Path:
|
1086 |
+
namestr = {
|
1087 |
+
GGMLFileType.AllF32: "f32",
|
1088 |
+
GGMLFileType.MostlyF16: "f16",
|
1089 |
+
GGMLFileType.MostlyQ4_1: "q4_1",
|
1090 |
+
GGMLFileType.PerLayerIsQ4_1: "q4_1",
|
1091 |
+
}[params.file_type]
|
1092 |
+
ret = model_paths[0].parent / f"ggml-model-{namestr}.bin"
|
1093 |
+
if ret in model_paths:
|
1094 |
+
sys.stderr.write(f"Error: Default output path ({ret}) would overwrite the input. Please explicitly specify a path using --outfile.\n")
|
1095 |
+
sys.exit(1)
|
1096 |
+
return ret
|
1097 |
+
|
1098 |
+
|
1099 |
+
def do_dump_model(model_plus: ModelPlus) -> None:
|
1100 |
+
print(f"model_plus.paths = {model_plus.paths!r}")
|
1101 |
+
print(f"model_plus.format = {model_plus.format!r}")
|
1102 |
+
print(f"model_plus.vocab = {model_plus.vocab!r}")
|
1103 |
+
for name, lazy_tensor in model_plus.model.items():
|
1104 |
+
print(f"{name}: shape={lazy_tensor.shape} type={lazy_tensor.data_type}; {lazy_tensor.description}")
|
1105 |
+
|
1106 |
+
|
1107 |
+
def main(args_in: Optional[List[str]] = None) -> None:
|
1108 |
+
parser = argparse.ArgumentParser(description="Convert a LLaMa model to a GGML compatible file")
|
1109 |
+
parser.add_argument("--dump", action="store_true", help="don't convert, just show what's in the model")
|
1110 |
+
parser.add_argument("--dump-single", action="store_true", help="don't convert, just show what's in a single model file")
|
1111 |
+
parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab")
|
1112 |
+
parser.add_argument("--outtype", choices=["f32", "f16", "q4_1"], help="output format (default: based on input)")
|
1113 |
+
parser.add_argument("--vocab-dir", type=Path, help="directory containing tokenizer.model, if separate from model file")
|
1114 |
+
parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
|
1115 |
+
parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.pth, *.pt, *.bin)")
|
1116 |
+
args = parser.parse_args(args_in)
|
1117 |
+
|
1118 |
+
vocab: Vocab
|
1119 |
+
if args.dump_single:
|
1120 |
+
model_plus = lazy_load_file(args.model)
|
1121 |
+
do_dump_model(model_plus)
|
1122 |
+
elif args.vocab_only:
|
1123 |
+
vocab = load_vocab(args.vocab_dir or args.model)
|
1124 |
+
assert args.outfile, "need --outfile if using --vocab-only"
|
1125 |
+
outfile = args.outfile
|
1126 |
+
OutputFile.write_vocab_only(outfile, vocab)
|
1127 |
+
print(f"Wrote {outfile}")
|
1128 |
+
else:
|
1129 |
+
model_plus = load_some_model(args.model)
|
1130 |
+
if args.dump:
|
1131 |
+
do_dump_model(model_plus)
|
1132 |
+
return
|
1133 |
+
if model_plus.vocab is not None and args.vocab_dir is None:
|
1134 |
+
vocab = model_plus.vocab
|
1135 |
+
else:
|
1136 |
+
vocab_dir = args.vocab_dir if args.vocab_dir else model_plus.paths[0].parent
|
1137 |
+
vocab = load_vocab(vocab_dir)
|
1138 |
+
model = model_plus.model
|
1139 |
+
model = do_necessary_conversions(model)
|
1140 |
+
output_type = pick_output_type(model, args.outtype)
|
1141 |
+
model = convert_to_output_type(model, output_type)
|
1142 |
+
params = Params.guessed(model, output_type)
|
1143 |
+
outfile = args.outfile or default_outfile(model_plus.paths, params)
|
1144 |
+
OutputFile.write_all(outfile, params, model, vocab)
|
1145 |
+
print(f"Wrote {outfile}")
|
1146 |
+
|
1147 |
+
|
1148 |
+
if __name__ == '__main__':
|
1149 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
llama-cpp-python
|
2 |
+
numpy==1.24
|
3 |
+
sentencepiece==0.1.98
|