Spaces:
Paused
Paused
Upload 4 files
Browse files- AICodeInit/.DS_Store +0 -0
- AICodeInit/LlamaCode.py +31 -0
- AICodeInit/__init__.py +2 -0
- AICodeInit/spacy_textblob_functions.py +57 -0
AICodeInit/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
AICodeInit/LlamaCode.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from peft import AutoPeftModelForCausalLM
|
2 |
+
from transformers import AutoTokenizer, pipeline
|
3 |
+
# Load the model
|
4 |
+
|
5 |
+
def create_pipeline():
|
6 |
+
model = AutoPeftModelForCausalLM.from_pretrained("Moritz-Pfeifer/financial-times-classification-llama-2-7b-v1.3")
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained("Moritz-Pfeifer/financial-times-classification-llama-2-7b-v1.3")
|
8 |
+
prompt = f"""
|
9 |
+
"You are given a news article regarding the greater Boston area.
|
10 |
+
Analyze the sentiment of the article enclosed in square brackets,
|
11 |
+
determine if it is positive, negative or neutral and return the answer as the corresponding sentiment label
|
12 |
+
"positive", "negative", or "neutral"".
|
13 |
+
|
14 |
+
"""
|
15 |
+
pipe = pipeline(task="text-generation",
|
16 |
+
model=model,
|
17 |
+
tokenizer=tokenizer,
|
18 |
+
max_new_tokens = 1,
|
19 |
+
temperature = 0.1,
|
20 |
+
)
|
21 |
+
return prompt, pipe
|
22 |
+
|
23 |
+
def predict_text(text,pipe,prompt):
|
24 |
+
result = pipe((prompt+"\n"+'['+'{'+text+'}'+']'+' '+'='))
|
25 |
+
answer = result[0]['generated_text'].split("=")[-1]
|
26 |
+
if "positive" in answer.lower():
|
27 |
+
return "positive"
|
28 |
+
elif "negative" in answer.lower():
|
29 |
+
return "negative"
|
30 |
+
else:
|
31 |
+
return "neutral"
|
AICodeInit/__init__.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
from .LlamaCode import *
|
2 |
+
from .spacy_textblob_functions import *
|
AICodeInit/spacy_textblob_functions.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from peft import AutoPeftModelForCausalLM
|
2 |
+
import spacy
|
3 |
+
import pandas as pd
|
4 |
+
from textblob import TextBlob
|
5 |
+
|
6 |
+
|
7 |
+
def load_model():
|
8 |
+
nlp = spacy.load("en_core_web_sm")
|
9 |
+
return nlp
|
10 |
+
|
11 |
+
def extract_entities(text,nlp):
|
12 |
+
doc = nlp(text)
|
13 |
+
entities = [(ent.text, ent.label_) for ent in doc.ents]
|
14 |
+
return entities
|
15 |
+
|
16 |
+
# Function to extract entities context
|
17 |
+
def extract_entities_with_context(text, nlp, window=5):
|
18 |
+
doc = nlp(text)
|
19 |
+
entity_context = []
|
20 |
+
for ent in doc.ents:
|
21 |
+
start = max(0, ent.start - window)
|
22 |
+
end = min(len(doc), ent.end + window)
|
23 |
+
context = doc[start:end].text
|
24 |
+
entity_context.append((ent.text, ent.label_, context))
|
25 |
+
return entity_context
|
26 |
+
|
27 |
+
def get_sentiment(text):
|
28 |
+
return TextBlob(text).sentiment.polarity
|
29 |
+
|
30 |
+
def analyze_entity_sentiments(entity_contexts):
|
31 |
+
sentiments = []
|
32 |
+
for text, label, context in entity_contexts:
|
33 |
+
sentiment = get_sentiment(context)
|
34 |
+
sentiments.append((text, label, sentiment))
|
35 |
+
return sentiments
|
36 |
+
|
37 |
+
def analyze_entity_sentiments_score(entity_contexts):
|
38 |
+
sentiments = []
|
39 |
+
for text, label, context in entity_contexts:
|
40 |
+
sentiment = get_sentiment(context)
|
41 |
+
sentiments.append((sentiment))
|
42 |
+
return sentiments
|
43 |
+
|
44 |
+
def calculate_avg_score(scores):
|
45 |
+
if scores:
|
46 |
+
return sum(scores) / len(scores)
|
47 |
+
else:
|
48 |
+
return float('inf')
|
49 |
+
|
50 |
+
|
51 |
+
def categorize_sentiment(score):
|
52 |
+
if score <= -0.1:
|
53 |
+
return 'Negative'
|
54 |
+
elif score >= 0.1:
|
55 |
+
return 'Positive'
|
56 |
+
else:
|
57 |
+
return 'Neutral'
|