Spaces:
Sleeping
Sleeping
File size: 13,564 Bytes
e7610f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 |
import torch
import matplotlib.pyplot as plt
from torchvision.utils import save_image
from torchvision import transforms
from torch.utils.data import DataLoader
import numpy as np, os
from torch import nn
import math
import torch.nn.functional as F
from torch.optim import Adam
from typing import Optional
import random
def mkdir(dir):
if not os.path.exists(dir):
os.makedirs(dir)
def get_beta_schedule(beta_schedule, beta_start, beta_end, num_diffusion_timesteps):
def sigmoid(x):
return 1 / (np.exp(-x) + 1)
if beta_schedule == "quad":
betas = (
np.linspace(
beta_start ** 0.5,
beta_end ** 0.5,
num_diffusion_timesteps,
dtype=np.float64,
)
** 2
)
elif beta_schedule == "linear":
betas = np.linspace(
beta_start, beta_end, num_diffusion_timesteps, dtype=np.float64
)
elif beta_schedule == "const":
betas = beta_end * np.ones(num_diffusion_timesteps, dtype=np.float64)
elif beta_schedule == "jsd": # 1/T, 1/(T-1), 1/(T-2), ..., 1
betas = 1.0 / np.linspace(
num_diffusion_timesteps, 1, num_diffusion_timesteps, dtype=np.float64
)
elif beta_schedule == "sigmoid":
betas = np.linspace(-6, 6, num_diffusion_timesteps)
betas = sigmoid(betas) * (beta_end - beta_start) + beta_start
else:
raise NotImplementedError(beta_schedule)
assert betas.shape == (num_diffusion_timesteps,)
betas = torch.from_numpy(betas).float()
return betas
def get_index_from_list(vals, t, x_shape):
"""
Returns a specific index t of a passed list of values vals
while considering the batch dimension.
"""
batch_size = t.shape[0]
out = vals.gather(-1, t.cpu())
return out.reshape(batch_size, *((1,) * (len(x_shape) - 1))).to(t.device)
def forward_diffusion_sample(x, t, device="cpu"):
"""
Takes an image and a timestep as input and
returns the noisy version of it
"""
noise = torch.randn_like(x) # gaussian noise
# noise = torch.FloatTensor(x.shape).uniform_(-1, 1) #uniform distribution noise
sqrt_alphas_cumprod_t = get_index_from_list(sqrt_alphas_cumprod, t, x.shape)
sqrt_one_minus_alphas_cumprod_t = get_index_from_list(
sqrt_one_minus_alphas_cumprod, t, x.shape
)
# print("coeff stats ",sqrt_alphas_cumprod_t, " and ", sqrt_one_minus_alphas_cumprod_t)
# mean + variance
return sqrt_alphas_cumprod_t.to(device) * x.to(device) \
+ sqrt_one_minus_alphas_cumprod_t.to(device) * noise.to(device), noise.to(device)
class Block(nn.Module):
def __init__(self, in_ch, out_ch, time_emb_dim, up=False):
super().__init__()
self.time_mlp = nn.Linear(time_emb_dim, out_ch)
if up:
self.conv1 = nn.Conv2d(2 * in_ch, out_ch, 3, padding=1)
self.transform = nn.ConvTranspose2d(out_ch, out_ch, 4, 2, 1)
else:
self.conv1 = nn.Conv2d(in_ch, out_ch, 3, padding=1)
self.transform = nn.Conv2d(out_ch, out_ch, 4, 2, 1)
self.conv2 = nn.Conv2d(out_ch, out_ch, 3, padding=1)
self.bnorm1 = nn.BatchNorm2d(out_ch)
self.bnorm2 = nn.BatchNorm2d(out_ch)
self.relu = nn.LeakyReLU(0.2)
def forward(self, x, t, ):
# First Conv
h = self.bnorm1(self.relu(self.conv1(x)))
# Time embedding
time_emb = self.relu(self.time_mlp(t))
# Extend last 2 dimensions
time_emb = time_emb[(...,) + (None,) * 2]
# Add time channel
h = h + time_emb
# Second Conv
h = self.bnorm2(self.relu(self.conv2(h)))
# Down or Upsample
return self.transform(h)
class SinusoidalPositionEmbeddings(nn.Module):
def __init__(self, dim):
super().__init__()
self.dim = dim
def forward(self, time):
device = time.device
half_dim = self.dim // 2
embeddings = math.log(10000) / (half_dim - 1)
embeddings = torch.exp(torch.arange(half_dim, device=device) * -embeddings)
embeddings = time[:, None] * embeddings[None, :]
embeddings = torch.cat((embeddings.sin(), embeddings.cos()), dim=-1)
return embeddings
class CrossAttention(nn.Module):
"""
### Cross Attention Layer
This falls-back to self-attention when conditional embeddings are not specified.
"""
use_flash_attention: bool = True
def __init__(self, d_model: int, d_cond: int, n_heads: int, d_head: int, is_inplace: bool = False):
"""
:param d_model: is the input embedding size
:param n_heads: is the number of attention heads
:param d_head: is the size of a attention head
:param d_cond: is the size of the conditional embeddings
:param is_inplace: specifies whether to perform the attention softmax computation inplace to
save memory
"""
super().__init__()
self.is_inplace = is_inplace
self.n_heads = n_heads
self.d_head = d_head
# Attention scaling factor
self.scale = d_head ** -0.5
# Query, key and value mappings
d_attn = d_head * n_heads
self.to_q = nn.Linear(d_model, d_attn, bias=False)
self.to_k = nn.Linear(d_cond, d_attn, bias=False)
self.to_v = nn.Linear(d_cond, d_attn, bias=False)
# Final linear layer
self.to_out = nn.Sequential(nn.Linear(d_attn, d_model))
def forward(self, x: torch.Tensor, cond: Optional[torch.Tensor] = None):
"""
:param x: are the input embeddings of shape `[batch_size, height * width, d_model]`
:param cond: is the conditional embeddings of shape `[batch_size, n_cond, d_cond]`
"""
# If `cond` is `None` we perform self attention
has_cond = cond is not None
if not has_cond:
cond = x
# Get query, key and value vectors
q = self.to_q(x)
k = self.to_k(cond)
v = self.to_v(cond)
return self.normal_attention(q, k, v)
def normal_attention(self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor):
"""
#### Normal Attention
:param q: are the query vectors before splitting heads, of shape `[batch_size, seq, d_attn]`
:param k: are the query vectors before splitting heads, of shape `[batch_size, seq, d_attn]`
:param v: are the query vectors before splitting heads, of shape `[batch_size, seq, d_attn]`
"""
# Split them to heads of shape `[batch_size, seq_len, n_heads, d_head]`
q = q.view(*q.shape[:2], self.n_heads, -1)
k = k.view(*k.shape[:2], self.n_heads, -1)
v = v.view(*v.shape[:2], self.n_heads, -1)
# Calculate attention $\frac{Q K^\top}{\sqrt{d_{key}}}$
attn = torch.einsum('bihd,bjhd->bhij', q, k) * self.scale
# Compute softmax
# $$\underset{seq}{softmax}\Bigg(\frac{Q K^\top}{\sqrt{d_{key}}}\Bigg)$$
if self.is_inplace:
half = attn.shape[0] // 2
attn[half:] = attn[half:].softmax(dim=-1)
attn[:half] = attn[:half].softmax(dim=-1)
else:
attn = attn.softmax(dim=-1)
# Compute attention output
# $$\underset{seq}{softmax}\Bigg(\frac{Q K^\top}{\sqrt{d_{key}}}\Bigg)V$$
out = torch.einsum('bhij,bjhd->bihd', attn, v)
# Reshape to `[batch_size, height * width, n_heads * d_head]`
out = out.reshape(*out.shape[:2], -1)
# Map to `[batch_size, height * width, d_model]` with a linear layer
return self.to_out(out)
class SimpleUnet(nn.Module):
def __init__(self):
super().__init__()
image_channels = 3
# down_channels = (64, 128, 256, 512, 1024)
# up_channels = (1024, 512, 256, 128, 64)
down_channels = (16, 32, 64, 128, 256)
up_channels = (256, 128, 64, 32, 16)
out_dim = 1
time_emb_dim = 32
# Time embedding
self.time_mlp = nn.Sequential(
SinusoidalPositionEmbeddings(time_emb_dim),
nn.Linear(time_emb_dim, time_emb_dim),
nn.ReLU()
)
# Initial projection
self.conv0 = nn.Conv2d(image_channels, down_channels[0], 3, padding=1)
# Downsample
self.downs = nn.ModuleList([Block(down_channels[i], down_channels[i + 1], \
time_emb_dim) \
for i in range(len(down_channels) - 1)])
# Upsample
self.ups = nn.ModuleList([Block(up_channels[i], up_channels[i + 1], \
time_emb_dim, up=True) \
for i in range(len(up_channels) - 1)])
self.silu = nn.SiLU()
self.output = nn.Conv2d(up_channels[-1], 3, out_dim)
self.apply_tanh = nn.Tanh()
self.cross_attention_module = CrossAttention(3, 32, 16, 16)
def forward(self, x, y, timestep):
# Embedd class condition using cross attention
batch_size = x.shape[0]
y = self.time_mlp(y)
y = y[:, None, :]
x = x.permute(0, 2, 3, 1).view(batch_size, IMG_SIZE * IMG_SIZE, 3)
x2 = x + self.cross_attention_module(x, y)
x2 = x2.view(batch_size, IMG_SIZE, IMG_SIZE, 3).permute(0, 3, 1, 2)
# Embedd time
t = self.time_mlp(timestep)
# Initial conv
x2 = self.conv0(x2)
# Unet
residual_inputs = []
for down in self.downs:
x2 = down(x2, t)
residual_inputs.append(x2)
for up in self.ups:
residual_x2 = residual_inputs.pop()
# Add residual x2 as additional channels
x2 = torch.cat((x2, residual_x2), dim=1)
x2 = up(x2, t)
x2 = self.silu(x2)
output = self.output(x2)
return output
def get_loss(model, x_0, t):
latent, condition = x_0 # both latents and condition have same shap
latent = latent.cuda()
condition = condition.cuda()
x_noisy, noise = forward_diffusion_sample(latent, t, device)
noise_pred = model(x_noisy, condition, t)
# return F.l1_loss(noise, noise_pred)
return F.mse_loss(noise, noise_pred)
@torch.no_grad()
def sample_timestep(x, model, y, t):
betas_t = get_index_from_list(betas, t, x.shape)
sqrt_one_minus_alphas_cumprod_t = get_index_from_list(
sqrt_one_minus_alphas_cumprod, t, x.shape
)
sqrt_recip_alphas_t = get_index_from_list(sqrt_recip_alphas, t, x.shape)
# Call model (current image - noise prediction)
model_mean = sqrt_recip_alphas_t * (
x - (betas_t / sqrt_one_minus_alphas_cumprod_t) * model(x, y, t)
)
posterior_variance_t = get_index_from_list(posterior_variance, t, x.shape)
# print("model prediction stats ",torch.max(model(x, y, t)), " and ", torch.min(model(x, y, t)))
if t == 0:
return model_mean
else:
noise = torch.randn_like(x)
return model_mean + torch.sqrt(posterior_variance_t) * noise
def show_tensor_image(image):
reverse_transforms = transforms.Compose([
transforms.Lambda(lambda t: (t + 1) / 2),
transforms.Lambda(lambda t: t.permute(1, 2, 0)), # CHW to HWC
transforms.Lambda(lambda t: t * 255.),
transforms.Lambda(lambda t: t.numpy().astype(np.uint8)),
transforms.ToPILImage(),
])
# Take first image of batch
if len(image.shape) == 4:
image = image[0, :, :, :]
plt.imshow(reverse_transforms(image))
def generate_latent(model_dir, cancer_type, output_dir):
if (cancer_type == 'benign'):
model_name = "digestpath_mask_benign_default.pt"
else:
model_name = "digestpath_mask_malignant_default.pt"
device = "cuda" if torch.cuda.is_available() else "cpu"
model_path = os.path.join(model_dir, model_name)
model = SimpleUnet()
model.to(device)
model.load_state_dict(torch.load(model_path))
print("model loaded")
model.eval()
# cancer_grade = random.randint(0, 1)
condition = torch.tensor([1]).cuda() # benign:0/malignant:1 grade cancer
# condition = torch.full([1, 1, IMG_SIZE, IMG_SIZE], condition).float().cuda()
img = torch.randn((1, 3, IMG_SIZE, IMG_SIZE), device=device)
for j in range(0, T)[::-1]:
t = torch.full((1,), j, device=device, dtype=torch.long)
img = sample_timestep(img, model, condition, t)
print("sampled image ", torch.max(img), " and ", torch.min(img))
save_image(img, os.path.join(output_dir, "sample.png"))
torch.save(img, os.path.join(output_dir, "sample.pt"))
# Define beta schedule
T = 1000
IMG_SIZE = 64
betas = get_beta_schedule(beta_schedule="linear",
beta_start=0.0001,
beta_end=0.02,
num_diffusion_timesteps=T)
# Pre-calculate different terms for closed form
alphas = 1. - betas
alphas_cumprod = torch.cumprod(alphas, axis=0)
sqrt_alphas_cumprod = torch.sqrt(alphas_cumprod) # root(alpha_bar)
sqrt_one_minus_alphas_cumprod = torch.sqrt(1. - alphas_cumprod) # root(1-alpha_bar)
sqrt_recip_alphas = torch.sqrt(1.0 / alphas) # 1/root(alpha)
alphas_cumprod_prev = F.pad(alphas_cumprod[:-1], (1, 0), value=1.0)
posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod)
# model_dir = "trained_models/diffusion"
# output_dir = r"F:\Datasets\DigestPath\scene_generation\all\1000\256\test\output\benign"
# generate_latent(model_dir, 'malignant', output_dir) |