srijaydeshpande commited on
Commit
540c30e
·
verified ·
1 Parent(s): b8800af

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +48 -38
app.py CHANGED
@@ -1,38 +1,48 @@
1
- import os
2
- import glob
3
- import argparse
4
- import shutil
5
- from PIL import Image
6
- import PIL
7
- import gradio as gr
8
- import random
9
- import numpy as np
10
- from diffusion import generate_latent
11
- from vq_vae import create_mask
12
-
13
- model_dir = 'trained_models'
14
-
15
- def create_image(cancer_type):
16
- tmp_dir = "./tmp"
17
- if os.path.exists(tmp_dir):
18
- shutil.rmtree(tmp_dir)
19
- os.makedirs(tmp_dir)
20
- generate_latent(model_dir, cancer_type, tmp_dir)
21
- create_mask(model_dir, "./tmp", "./tmp/test_masks")
22
- os.system('python pix2pixhd_test.py --name diffusion_dp --dataroot ./tmp --label_nc 0 --no_instance --resize_or_crop none')
23
- image_dir = "./tmp/diffusion_dp/test_latest/images"
24
- input_label_image = Image.open(os.path.join(image_dir, "sample_input_label.jpg"))
25
- synthesized_image = Image.open(os.path.join(image_dir, "sample_synthesized_image.jpg"))
26
- return input_label_image, synthesized_image
27
-
28
-
29
- demo = gr.Interface(
30
- create_image,
31
- inputs=gr.Radio(choices=["benign", "malignant"], label="Choose Type", value="benign"),
32
- outputs=[gr.Image(), gr.Image()],
33
- title="Diffusion based Image Generation"
34
- )
35
-
36
- demo.launch()
37
-
38
- # create_image('benign')
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import glob
3
+ import argparse
4
+ import shutil
5
+ from PIL import Image
6
+ import PIL
7
+ import gradio as gr
8
+ import random
9
+ import numpy as np
10
+ from diffusion import generate_latent
11
+ from vq_vae import create_mask
12
+ from huggingface_hub import snapshot_download
13
+ import spaces
14
+
15
+ # model_dir = 'trained_models'
16
+
17
+ from huggingface_hub import login
18
+ login(token = os.getenv('HF_TOKEN'))
19
+
20
+ local_dir = snapshot_download(
21
+ repo_id="srijaydeshpande/diffusion"
22
+ )
23
+
24
+ @spaces.GPU(duration=120)
25
+ def create_image(cancer_type):
26
+ tmp_dir = "./tmp"
27
+ if os.path.exists(tmp_dir):
28
+ shutil.rmtree(tmp_dir)
29
+ os.makedirs(tmp_dir)
30
+ generate_latent(model_dir, cancer_type, tmp_dir)
31
+ create_mask(model_dir, "./tmp", "./tmp/test_masks")
32
+ os.system('python pix2pixhd_test.py --name diffusion_dp --dataroot ./tmp --label_nc 0 --no_instance --resize_or_crop none')
33
+ image_dir = "./tmp/diffusion_dp/test_latest/images"
34
+ input_label_image = Image.open(os.path.join(image_dir, "sample_input_label.jpg"))
35
+ synthesized_image = Image.open(os.path.join(image_dir, "sample_synthesized_image.jpg"))
36
+ return input_label_image, synthesized_image
37
+
38
+
39
+ demo = gr.Interface(
40
+ create_image,
41
+ inputs=gr.Radio(choices=["benign", "malignant"], label="Choose Type", value="benign"),
42
+ outputs=[gr.Image(), gr.Image()],
43
+ title="Diffusion based Image Generation"
44
+ )
45
+
46
+ demo.launch()
47
+
48
+ # create_image('benign')