Spaces:
Sleeping
Sleeping
File size: 1,455 Bytes
c793c0d 1528be0 c793c0d 1528be0 c793c0d 1528be0 c793c0d 1528be0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
---
title: FastSAM
emoji: 🐠
colorFrom: pink
colorTo: indigo
sdk: gradio
sdk_version: 3.45.1
app_file: app_gradio.py
pinned: false
license: apache-2.0
---
# Fast Segment Anything
Official PyTorch Implementation of the <a href="https://github.com/CASIA-IVA-Lab/FastSAM">.
The **Fast Segment Anything Model(FastSAM)** is a CNN Segment Anything Model trained by only 2% of the SA-1B dataset published by SAM authors. The FastSAM achieve a comparable performance with
the SAM method at **50× higher run-time speed**.
## License
The model is licensed under the [Apache 2.0 license](LICENSE).
## Acknowledgement
- [Segment Anything](https://segment-anything.com/) provides the SA-1B dataset and the base codes.
- [YOLOv8](https://github.com/ultralytics/ultralytics) provides codes and pre-trained models.
- [YOLACT](https://arxiv.org/abs/2112.10003) provides powerful instance segmentation method.
- [Grounded-Segment-Anything](https://huggingface.co/spaces/yizhangliu/Grounded-Segment-Anything) provides a useful web demo template.
## Citing FastSAM
If you find this project useful for your research, please consider citing the following BibTeX entry.
```
@misc{zhao2023fast,
title={Fast Segment Anything},
author={Xu Zhao and Wenchao Ding and Yongqi An and Yinglong Du and Tao Yu and Min Li and Ming Tang and Jinqiao Wang},
year={2023},
eprint={2306.12156},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
``` |