Sasha Rush commited on
Commit
8d0a608
·
1 Parent(s): 863c66b
This view is limited to 50 files because it contains too many changes.   See raw diff
#agent.pmpt.txt# DELETED
@@ -1,35 +0,0 @@
1
- Assistant is a large language model trained by OpenAI.
2
-
3
- Assistant is designed to be able to assist with a wide range of tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. As a language model, Assistant is able to generate human-like text based on the input it receives, allowing it to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand.
4
-
5
- Assistant is constantly learning and improving, and its capabilities are constantly evolving. It is able to process and understand large amounts of text, and can use this knowledge to provide accurate and informative responses to a wide range of questions. Additionally, Assistant is able to generate its own text based on the input it receives, allowing it to engage in discussions and provide explanations and descriptions on a wide range of topics.
6
-
7
- Overall, Assistant is a powerful tool that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. Whether you need help with a specific question or just want to have a conversation about a particular topic, Assistant is here to assist.
8
-
9
- TOOLS:
10
- ------
11
-
12
- Assistant has access to the following tools:
13
-
14
- {{tools_names}}
15
-
16
- To use a tool, please use the following format:
17
-
18
- ```
19
- Thought: Do I need to use a tool? Yes
20
- Action: the action to take, should be one of [{{tool_names}}]
21
- Action Input: the input to the action
22
- Observation: the result of the action
23
- ```
24
-
25
- When you have a response to say to the Human, or if you do not need to use a tool, you MUST use the format:
26
-
27
- ```
28
- Thought: Do I need to use a tool? No
29
- AI: [your response here]
30
- ```
31
-
32
- Begin!
33
-
34
- New input: {{input}}
35
- {{agent_scratchpad}}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
#agent.py# DELETED
@@ -1,46 +0,0 @@
1
- # + tags=["hide_inp"]
2
-
3
- desc = """
4
- ### Gradio Tool
5
-
6
- Chain that ask for a command-line question and then runs the bash command. [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/srush/MiniChain/blob/master/examples/bash.ipynb)
7
-
8
- (Adapted from LangChain [BashChain](https://langchain.readthedocs.io/en/latest/modules/chains/examples/llm_bash.html))
9
- """
10
- # -
11
-
12
- # $
13
-
14
- from minichain import show, prompt, OpenAI
15
- from gradio_tools.tools import StableDiffusionTool, ImageCaptioningTool
16
-
17
- class Tool1:
18
- description: str = "Tool 1"
19
- def run(self, prompt):
20
- return prompt
21
-
22
- class Tool2:
23
- description: str = "Tool 2"
24
- def run(self, prompt):
25
- return prompt
26
-
27
-
28
- @prompt(OpenAI())
29
- def gen(model, query):
30
- return model(query)
31
-
32
- def gradio_example(query):
33
- return gen(query)
34
-
35
-
36
- # $
37
-
38
- gradio = show(gradio_example,
39
- subprompts=[caption],
40
- examples=['/home/srush/Projects/MiniChain/examples/63dd90c7-9b8d-4ba4-bc07-a378fd932304/tmph3xi9ylr.jpg', 'Make me a flower'],
41
- out_type="markdown",
42
- description=desc
43
- )
44
- if __name__ == "__main__":
45
- gradio.launch()
46
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
#base.sh# DELETED
@@ -1,2 +0,0 @@
1
- export OPENAI_API_KEY="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"
2
- export SERP_KEY="593a073fa4c730efe918e592a538b36e80841bc8f8dd4070c1566920f75ba140"
 
 
 
#chat.py# DELETED
@@ -1,76 +0,0 @@
1
- # + tags=["hide_inp"]
2
- desc = """
3
- ### Chat
4
-
5
- A chat-like example for multi-turn chat with state. [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/srush/MiniChain/blob/master/examples/chat.ipynb)
6
-
7
- (Adapted from [LangChain](https://langchain.readthedocs.io/en/latest/modules/memory/examples/chatgpt_clone.html)'s version of this [blog post](https://www.engraved.blog/building-a-virtual-machine-inside/).)
8
-
9
- """
10
- # -
11
-
12
-
13
- # $
14
-
15
- from dataclasses import dataclass, replace
16
- from typing import List, Tuple
17
- from minichain import OpenAI, prompt, show, transform, Mock
18
-
19
- # Generic stateful Memory
20
-
21
- MEMORY = 2
22
-
23
- @dataclass
24
- class State:
25
- memory: List[Tuple[str, str]]
26
- human_input: str = ""
27
-
28
- def push(self, response: str) -> "State":
29
- memory = self.memory if len(self.memory) < MEMORY else self.memory[1:]
30
- return State(memory + [(self.human_input, response)])
31
-
32
- def __str__(self):
33
- return self.memory[-1][-1]
34
-
35
- # Chat prompt with memory
36
-
37
- @prompt(OpenAI(), template_file="chat.pmpt.tpl")
38
- def chat_response(model, state: State) -> State:
39
- return model.stream(state)
40
-
41
- @transform()
42
- def update(state, chat_output):
43
- result = chat_output.split("Assistant:")[-1]
44
- return state.push(result)
45
-
46
-
47
- def chat(command, state):
48
- state = replace(state, human_input=command)
49
- return update(state, chat_response(state))
50
-
51
- # $
52
-
53
- examples = [
54
- "ls ~",
55
- "cd ~",
56
- "{Please make a file jokes.txt inside and put some jokes inside}",
57
- """echo -e "x=lambda y:y*5+3;print('Result:' + str(x(6)))" > run.py && python3 run.py""",
58
- """echo -e "print(list(filter(lambda x: all(x%d for d in range(2,x)),range(2,3**10)))[:10])" > run.py && python3 run.py""",
59
- """echo -e "echo 'Hello from Docker" > entrypoint.sh && echo -e "FROM ubuntu:20.04\nCOPY entrypoint.sh entrypoint.sh\nENTRYPOINT [\"/bin/sh\",\"entrypoint.sh\"]">Dockerfile && docker build . -t my_docker_image && docker run -t my_docker_image""",
60
- "nvidia-smi"
61
- ]
62
-
63
- print(chat("ls", State([])).run())
64
-
65
- gradio = show(chat,
66
- initial_state=State([]),
67
- subprompts=[chat_response],
68
- examples=examples,
69
- out_type="json",
70
- description=desc,
71
- code=open("chat.py", "r").read().split("$")[1].strip().strip("#").strip(),
72
- )
73
- if __name__ == "__main__":
74
- gradio.queue().launch()
75
-
76
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
#chatgpt.py# DELETED
@@ -1,78 +0,0 @@
1
- # + tags=["hide_inp"]
2
-
3
- desc = """
4
- # ChatGPT
5
-
6
- "ChatGPT" like examples. Adapted from
7
- [LangChain](https://langchain.readthedocs.io/en/latest/modules/memory/examples/chatgpt_clone.html)'s
8
- version of this [blog post](https://www.engraved.blog/building-a-virtual-machine-inside/).
9
- """
10
- # -
11
-
12
- import warnings
13
- from dataclasses import dataclass
14
- from typing import List, Tuple
15
- from IPython.display import Markdown, display
16
- import minichain
17
-
18
- # + tags=["hide_inp"]
19
- warnings.filterwarnings("ignore")
20
- # -
21
-
22
-
23
- # Generic stateful Memory
24
-
25
- MEMORY = 2
26
-
27
- @dataclass
28
- class State:
29
- memory: List[Tuple[str, str]]
30
- human_input: str = ""
31
-
32
- def push(self, response: str) -> "State":
33
- memory = self.memory if len(self.memory) < MEMORY else self.memory[1:]
34
- return State(memory + [(self.human_input, response)])
35
-
36
- # Chat prompt with memory
37
-
38
- class ChatPrompt(minichain.TemplatePrompt):
39
- template_file = "chatgpt.pmpt.tpl"
40
- def parse(self, out: str, inp: State) -> State:
41
- result = out.split("Assistant:")[-1]
42
- return inp.push(result)
43
-
44
- class Human(minichain.Prompt):
45
- def parse(self, out: str, inp: State) -> State:
46
- return inp.human_input = out
47
-
48
-
49
- fake_human = [
50
- "I want you to act as a Linux terminal. I will type commands and you will reply with what the terminal should show. I want you to only reply with the terminal output inside one unique code block, and nothing else. Do not write explanations. Do not type commands unless I instruct you to do so. When I need to tell you something in English I will do so by putting text inside curly brackets {like this}. My first command is pwd.",
51
- "ls ~",
52
- "cd ~",
53
- "{Please make a file jokes.txt inside and put some jokes inside}",
54
- """echo -e "x=lambda y:y*5+3;print('Result:' + str(x(6)))" > run.py && python3 run.py""",
55
- """echo -e "print(list(filter(lambda x: all(x%d for d in range(2,x)),range(2,3**10)))[:10])" > run.py && python3 run.py""",
56
- """echo -e "echo 'Hello from Docker" > entrypoint.sh && echo -e "FROM ubuntu:20.04\nCOPY entrypoint.sh entrypoint.sh\nENTRYPOINT [\"/bin/sh\",\"entrypoint.sh\"]">Dockerfile && docker build . -t my_docker_image && docker run -t my_docker_image""",
57
- "nvidia-smi"
58
- ]
59
-
60
- with minichain.start_chain("chatgpt") as backend:
61
- prompt = ChatPrompt(backend.OpenAI())
62
- human = Human(backend.Mock(fake_human))
63
- state = State([])
64
- for i in range(len(fake_human)):
65
- human.chain(prompt)
66
- # display(Markdown(f'**Human:** <span style="color: blue">{t}</span>'))
67
- # display(Markdown(f'**Assistant:** {state.memory[-1][1]}'))
68
- # display(Markdown(f'--------------'))
69
-
70
-
71
- # + tags=["hide_inp"]
72
- ChatPrompt().show(State([("human 1", "output 1"), ("human 2", "output 2") ], "cd ~"),
73
- "Text Assistant: Hello")
74
- # -
75
-
76
- # View the run log.
77
-
78
- minichain.show_log("chatgpt.log")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
#math_demo.py# DELETED
@@ -1,27 +0,0 @@
1
- # Notebook to answer a math problem with code.
2
- # Adapted from Dust [maths-generate-code](https://dust.tt/spolu/a/d12ac33169)
3
-
4
- import minichain
5
-
6
- # Prompt that asks LLM for code from math.
7
-
8
- class MathPrompt(minichain.TemplatePrompt[str]):
9
- template_file = "math.pmpt.tpl"
10
-
11
- # Ask a question and run it as python code.
12
-
13
- with minichain.start_chain("math") as backend:
14
- question = "What is the sum of the powers of 3 (3^i) that are smaller than 100?"
15
- prompt = MathPrompt(backend.OpenAI()).chain(minichain.SimplePrompt(backend.Python()))
16
- result = prompt({"question": question})
17
- print(result)
18
-
19
- # View the prompt
20
-
21
- # + tags=["hide_inp"]
22
- MathPrompt().show({"question": "What is 10 + 12?"}, "10 + 12")
23
- # -
24
-
25
- # View the log
26
-
27
- minichain.show_log("math.log")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
#ner.py# DELETED
@@ -1,46 +0,0 @@
1
- # + tags=["hide_inp"]
2
-
3
- desc = """
4
- ### Named Entity Recognition
5
-
6
- Chain that does named entity recognition with arbitrary labels. [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/srush/MiniChain/blob/master/examples/ner.ipynb)
7
-
8
- (Adapted from [promptify](https://github.com/promptslab/Promptify/blob/main/promptify/prompts/nlp/templates/ner.jinja)).
9
- """
10
- # -
11
-
12
- # $
13
-
14
- from minichain import prompt, transform, show, OpenAI
15
- import json
16
-
17
- @prompt(OpenAI(), template_file = "ner.pmpt.tpl")
18
- def ner_extract(model, kwargs):
19
- return model(kwargs)
20
-
21
- @transform()
22
- def to_json(chat_output):
23
- return json.loads(chat_output)
24
-
25
- @prompt(OpenAI())
26
- def team_describe(model, inp):
27
- query = "Can you describe these basketball teams? " + \
28
- " ".join([i["E"] for i in inp if i["T"] =="Team"])
29
- return model(query)
30
-
31
-
32
- def ner(text_input, labels, domain):
33
- extract = to_json(ner_extract(dict(text_input=text_input, labels=labels, domain=domain)))
34
- return team_describe(extract)
35
-
36
- # $
37
-
38
- gradio = show(ner,
39
- examples=[["An NBA playoff pairing a year ago, the 76ers (39-20) meet the Miami Heat (32-29) for the first time this season on Monday night at home.", "Team, Date", "Sports"]],
40
- description=desc,
41
- subprompts=[ner_extract, team_describe],
42
- code=open("ner.py", "r").read().split("$")[1].strip().strip("#").strip(),
43
- )
44
-
45
- if __name__ == "__main__":
46
- gradio.queue().launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
#qa.py# DELETED
@@ -1,62 +0,0 @@
1
- # + tags=["hide_inp"]
2
- desc = """
3
- ### Question Answering with Retrieval
4
-
5
- Chain that answers questions with embeedding based retrieval. [[Code](https://github.com/srush/MiniChain/blob/main/examples/qa.py)]
6
-
7
- (Adapted from [OpenAI Notebook](https://github.com/openai/openai-cookbook/blob/main/examples/Question_answering_using_embeddings.ipynb).)
8
- """
9
- # -
10
-
11
- import datasets
12
- import numpy as np
13
-
14
- from minichain import EmbeddingPrompt, TemplatePrompt, show_log, start_chain
15
-
16
- # We use Hugging Face Datasets as the database by assigning
17
- # a FAISS index.
18
-
19
- olympics = datasets.load_from_disk("olympics.data")
20
- olympics.add_faiss_index("embeddings")
21
-
22
-
23
- # Fast KNN retieval prompt
24
-
25
-
26
- class KNNPrompt(EmbeddingPrompt):
27
- def find(self, out, inp):
28
- res = olympics.get_nearest_examples("embeddings", np.array(out), 3)
29
- return {"question": inp, "docs": res.examples["content"]}
30
-
31
-
32
- # QA prompt to ask question with examples
33
-
34
-
35
- class QAPrompt(TemplatePrompt):
36
- template_file = "qa.pmpt.tpl"
37
-
38
-
39
- with start_chain("qa") as backend:
40
- prompt = KNNPrompt(backend.OpenAIEmbed()).chain(QAPrompt(backend.OpenAI()))
41
-
42
- questions = ["Who won the 2020 Summer Olympics men's high jump?",
43
- "Why was the 2020 Summer Olympics originally postponed?",
44
- "In the 2020 Summer Olympics, how many gold medals did the country which won the most medals win?",
45
- "What is the total number of medals won by France?",
46
- "What is the tallest mountain in the world?"]
47
-
48
- gradio = prompt.to_gradio(fields=["query"],
49
- examples=questions,
50
- description=desc)
51
- if __name__ == "__main__":
52
- gradio.launch()
53
-
54
-
55
-
56
- # # + tags=["hide_inp"]
57
- # QAPrompt().show(
58
- # {"question": "Who won the race?", "docs": ["doc1", "doc2", "doc3"]}, "Joe Bob"
59
- # )
60
- # # -
61
-
62
- # show_log("qa.log")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
#selfask.py# DELETED
@@ -1,64 +0,0 @@
1
-
2
- desc = """
3
- ### Self-Ask
4
-
5
- Notebook implementation of the self-ask + Google tool use prompt.
6
-
7
- (Adapted from [Self-Ask repo](https://github.com/ofirpress/self-ask))
8
- """
9
-
10
- # $
11
-
12
- from dataclasses import dataclass, replace
13
- from typing import Optional
14
- from minichain import prompt, show, OpenAI, Google
15
-
16
-
17
- @dataclass
18
- class State:
19
- question: str
20
- history: str = ""
21
- next_query: Optional[str] = None
22
- final_answer: Optional[str] = None
23
-
24
-
25
- @prompt(OpenAI(),
26
- template_file = "selfask.pmpt.tpl",
27
- stop_template = "\nIntermediate answer:")
28
- def self_ask(model, state):
29
- out = model(state)
30
- res = out.split(":", 1)[1]
31
- if out.startswith("Follow up:"):
32
- return replace(state, next_query=res)
33
- elif out.startswith("So the final answer is:"):
34
- return replace(state, final_answer=res)
35
-
36
- @prompt(Google())
37
- def google(model, state):
38
- if state.next_query is None:
39
- return state
40
-
41
- result = model(state.next_query)
42
- return State(state.question,
43
- state.history + "\nIntermediate answer: " + result + "\n")
44
-
45
- def selfask(question):
46
- state = State(question)
47
- for i in range(3):
48
- state = self_ask(state)
49
- state = google(state)
50
- return state
51
-
52
- # $
53
-
54
- gradio = show(selfask,
55
- examples=["What is the zip code of the city where George Washington was born?"],
56
- subprompts=[self_ask, google] * 3,
57
- description=desc,
58
- code=open("selfask.py", "r").read().split("$")[1].strip().strip("#").strip(),
59
- out_type="json"
60
- )
61
- if __name__ == "__main__":
62
- gradio.launch()
63
-
64
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
README.md CHANGED
@@ -4,7 +4,7 @@ emoji: ⛓️
4
  colorFrom: purple
5
  colorTo: blue
6
  sdk: gradio
7
- sdk_version: 3.26.0
8
  app_file: app.py
9
  pinned: true
10
  python_version: 3.9.0
 
4
  colorFrom: purple
5
  colorTo: blue
6
  sdk: gradio
7
+ sdk_version: 4.7.0
8
  app_file: app.py
9
  pinned: true
10
  python_version: 3.9.0
README.md~ DELETED
@@ -1,12 +0,0 @@
1
- ---
2
- title: Minichain Math
3
- emoji: 📈
4
- colorFrom: purple
5
- colorTo: blue
6
- sdk: gradio
7
- sdk_version: 3.21.0
8
- app_file: app.py
9
- pinned: false
10
- ---
11
-
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
__pycache__/agent.cpython-310.pyc ADDED
Binary file (2.59 kB). View file
 
__pycache__/bash.cpython-310.pyc CHANGED
Binary files a/__pycache__/bash.cpython-310.pyc and b/__pycache__/bash.cpython-310.pyc differ
 
__pycache__/chat.cpython-310.pyc CHANGED
Binary files a/__pycache__/chat.cpython-310.pyc and b/__pycache__/chat.cpython-310.pyc differ
 
__pycache__/examples.cpython-310.pyc DELETED
Binary file (1.35 kB)
 
__pycache__/gatsby.cpython-310.pyc CHANGED
Binary files a/__pycache__/gatsby.cpython-310.pyc and b/__pycache__/gatsby.cpython-310.pyc differ
 
__pycache__/gatsby.cpython-38.pyc ADDED
Binary file (1.35 kB). View file
 
__pycache__/math.cpython-310.pyc DELETED
Binary file (799 Bytes)
 
__pycache__/math_demo.cpython-310.pyc CHANGED
Binary files a/__pycache__/math_demo.cpython-310.pyc and b/__pycache__/math_demo.cpython-310.pyc differ
 
__pycache__/ner.cpython-310.pyc CHANGED
Binary files a/__pycache__/ner.cpython-310.pyc and b/__pycache__/ner.cpython-310.pyc differ
 
__pycache__/ner.cpython-38.pyc ADDED
Binary file (1.61 kB). View file
 
__pycache__/pal.cpython-310.pyc CHANGED
Binary files a/__pycache__/pal.cpython-310.pyc and b/__pycache__/pal.cpython-310.pyc differ
 
__pycache__/pal.cpython-38.pyc ADDED
Binary file (1.22 kB). View file
 
__pycache__/qa.cpython-310.pyc CHANGED
Binary files a/__pycache__/qa.cpython-310.pyc and b/__pycache__/qa.cpython-310.pyc differ
 
__pycache__/selfask.cpython-310.pyc CHANGED
Binary files a/__pycache__/selfask.cpython-310.pyc and b/__pycache__/selfask.cpython-310.pyc differ
 
__pycache__/stats.cpython-310.pyc CHANGED
Binary files a/__pycache__/stats.cpython-310.pyc and b/__pycache__/stats.cpython-310.pyc differ
 
__pycache__/table.cpython-310.pyc ADDED
Binary file (3.74 kB). View file
 
__pycache__/test.cpython-38.pyc ADDED
Binary file (1.35 kB). View file
 
agent.pmpt.tpl~ DELETED
@@ -1,38 +0,0 @@
1
- Assistant is a large language model trained by OpenAI.
2
-
3
- Assistant is designed to be able to assist with a wide range of tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. As a language model, Assistant is able to generate human-like text based on the input it receives, allowing it to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand.
4
-
5
- Assistant is constantly learning and improving, and its capabilities are constantly evolving. It is able to process and understand large amounts of text, and can use this knowledge to provide accurate and informative responses to a wide range of questions. Additionally, Assistant is able to generate its own text based on the input it receives, allowing it to engage in discussions and provide explanations and descriptions on a wide range of topics.
6
-
7
- Overall, Assistant is a powerful tool that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. Whether you need help with a specific question or just want to have a conversation about a particular topic, Assistant is here to assist.
8
-
9
- TOOLS:
10
- ------
11
-
12
- Assistant has access to the following tools:
13
-
14
- {{tools_names}}
15
-
16
- To use a tool, please use the following format:
17
-
18
- ```
19
- Thought: Do I need to use a tool? Yes
20
- Action: the action to take, should be one of [{{tool_names}}]
21
- Action Input: the input to the action
22
- Observation: the result of the action
23
- ```
24
-
25
- When you have a response to say to the Human, or if you do not need to use a tool, you MUST use the format:
26
-
27
- ```
28
- Thought: Do I need to use a tool? No
29
- AI: [your response here]
30
- ```
31
-
32
- Begin!
33
-
34
- Previous conversation history:
35
- {{chat_history}}
36
-
37
- New input: {{input}}
38
- {{agent_scratchpad}}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
agent.pmpt.txt DELETED
@@ -1,35 +0,0 @@
1
- Assistant is a large language model trained by OpenAI.
2
-
3
- Assistant is designed to be able to assist with a wide range of tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. As a language model, Assistant is able to generate human-like text based on the input it receives, allowing it to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand.
4
-
5
- Assistant is constantly learning and improving, and its capabilities are constantly evolving. It is able to process and understand large amounts of text, and can use this knowledge to provide accurate and informative responses to a wide range of questions. Additionally, Assistant is able to generate its own text based on the input it receives, allowing it to engage in discussions and provide explanations and descriptions on a wide range of topics.
6
-
7
- Overall, Assistant is a powerful tool that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. Whether you need help with a specific question or just want to have a conversation about a particular topic, Assistant is here to assist.
8
-
9
- TOOLS:
10
- ------
11
-
12
- Assistant has access to the following tools:
13
-
14
- {{tools_names}}
15
-
16
- To use a tool, please use the following format:
17
-
18
- ```
19
- Thought: Do I need to use a tool? Yes
20
- Action: the action to take, should be one of [{{tool_names}}]
21
- Action Input: the input to the action
22
- Observation: the result of the action
23
- ```
24
-
25
- When you have a response to say to the Human, or if you do not need to use a tool, you MUST use the format:
26
-
27
- ```
28
- Thought: Do I need to use a tool? No
29
- AI: [your response here]
30
- ```
31
-
32
- Begin!
33
-
34
- New input: {{input}}
35
- {{agent_scratchpad}}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
agent.pmpt.txt~ DELETED
@@ -1,38 +0,0 @@
1
- Assistant is a large language model trained by OpenAI.
2
-
3
- Assistant is designed to be able to assist with a wide range of tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. As a language model, Assistant is able to generate human-like text based on the input it receives, allowing it to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand.
4
-
5
- Assistant is constantly learning and improving, and its capabilities are constantly evolving. It is able to process and understand large amounts of text, and can use this knowledge to provide accurate and informative responses to a wide range of questions. Additionally, Assistant is able to generate its own text based on the input it receives, allowing it to engage in discussions and provide explanations and descriptions on a wide range of topics.
6
-
7
- Overall, Assistant is a powerful tool that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. Whether you need help with a specific question or just want to have a conversation about a particular topic, Assistant is here to assist.
8
-
9
- TOOLS:
10
- ------
11
-
12
- Assistant has access to the following tools:
13
-
14
- {{tools_names}}
15
-
16
- To use a tool, please use the following format:
17
-
18
- ```
19
- Thought: Do I need to use a tool? Yes
20
- Action: the action to take, should be one of [{{tool_names}}]
21
- Action Input: the input to the action
22
- Observation: the result of the action
23
- ```
24
-
25
- When you have a response to say to the Human, or if you do not need to use a tool, you MUST use the format:
26
-
27
- ```
28
- Thought: Do I need to use a tool? No
29
- AI: [your response here]
30
- ```
31
-
32
- Begin!
33
-
34
- Previous conversation history:
35
- {{chat_history}}
36
-
37
- New input: {{input}}
38
- {{agent_scratchpad}}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
agent.py CHANGED
@@ -21,7 +21,7 @@ from gradio_tools.tools import StableDiffusionTool, ImageCaptioningTool, ImageTo
21
 
22
  # description = "Image Captioning"
23
 
24
- tools = [StableDiffusionTool(), ImageCaptioningTool()]
25
 
26
 
27
  @prompt(OpenAI(stop=["Observation:"]),
 
21
 
22
  # description = "Image Captioning"
23
 
24
+ tools = [StableDiffusionTool(), ImageCaptioningTool(), ImageToMusicTool()]
25
 
26
 
27
  @prompt(OpenAI(stop=["Observation:"]),
agent.py~ DELETED
@@ -1,75 +0,0 @@
1
- # + tags=["hide_inp"]
2
-
3
- desc = """
4
- ### Gradio Tool
5
-
6
- Chain that ask for a command-line question and then runs the bash command. [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/srush/MiniChain/blob/master/examples/bash.ipynb)
7
-
8
- (Adapted from LangChain [BashChain](https://langchain.readthedocs.io/en/latest/modules/chains/examples/llm_bash.html))
9
- """
10
- # -
11
-
12
- # $
13
-
14
- from minichain import Id, prompt, OpenAIStream
15
- from gradio_tools.tools import StableDiffusionTool, ImageCaptioningTool
16
-
17
-
18
-
19
- @prompt(StableDiffusionTool())
20
- def gen(model, query):
21
- return model(query)
22
-
23
- @prompt(ImageCaptioningTool())
24
- def caption(model, img_src):
25
- return model(img_src)
26
-
27
- tools = [gen, caption]
28
-
29
- @prompt(Id(),
30
- #OpenAIStream(), stream=True,
31
- template_file="agent.pmpt.tpl")
32
- def agent(model, query):
33
- print(model(dict(tools=[(str(tool.backend.__class__), tool.backend.description)
34
- for tool in tools],
35
- input=query
36
- )))
37
- return ("StableDiffusionTool", "Draw a flower")
38
- # out = ""
39
- # for t in model.stream(dict(tools=[(str(tool.backend.__class__), tool.backend.description)
40
- # for tool in tools],
41
- # input=query
42
- # )):
43
- # out += t
44
- # yield out
45
- # lines = out.split("\n")
46
- # response = lines[0].split("?")[1].strip()
47
- # if response == "Yes":
48
- # tool = lines[1].split(":")[1].strip()
49
- # yield tool
50
-
51
- @prompt(dynamic=tools)
52
- def selector(model, input):
53
- selector, input = input
54
- if selector == "StableDiffusionTool":
55
- return model.tool(input, tool_num=0)
56
- else:
57
- return model.tool(input, tool_num=1)
58
-
59
-
60
- def run(query):
61
- select_input = agent(query)
62
- return selector(select_input)
63
-
64
- run("make a pic").run()
65
- # $
66
-
67
- gradio = show(run,
68
- subprompts=[agent, selector],
69
- examples=['Draw me a flower'],
70
- out_type="markdown",
71
- description=desc
72
- )
73
- if __name__ == "__main__":
74
- gradio.launch()
75
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
app.ipynb DELETED
@@ -1,106 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": null,
6
- "id": "0e8d6177",
7
- "metadata": {},
8
- "outputs": [],
9
- "source": [
10
- "!pip install -q git+https://github.com/srush/MiniChain\n",
11
- "!git clone https://github.com/srush/MiniChain; cp -fr MiniChain/examples/* . "
12
- ]
13
- },
14
- {
15
- "cell_type": "code",
16
- "execution_count": null,
17
- "id": "be91fdf2",
18
- "metadata": {},
19
- "outputs": [],
20
- "source": [
21
- "import gradio as gr\n",
22
- "from chat import gradio as chat\n",
23
- "from ner import gradio as ner\n",
24
- "from math_demo import gradio as math_demo\n",
25
- "from bash import gradio as bash\n",
26
- "from pal import gradio as pal\n",
27
- "from gatsby import gradio as gatsby\n",
28
- "from qa import gradio as qa\n",
29
- "from stats import gradio as stats\n",
30
- "from selfask import gradio as selfask\n",
31
- "from backtrack import gradio as backtrack"
32
- ]
33
- },
34
- {
35
- "cell_type": "code",
36
- "execution_count": null,
37
- "id": "2b618caa",
38
- "metadata": {},
39
- "outputs": [],
40
- "source": [
41
- "CSS = \"\"\"\n",
42
- "#clean div.form {border: 0px} \n",
43
- "#response {border: 0px; background: #ffeec6} \n",
44
- "#prompt {border: 0px;background: aliceblue} \n",
45
- "#json {border: 0px} \n",
46
- "#result {border: 0px; background: #c5e0e5} \n",
47
- "#inner {margin: 10px; padding: 10px; font-size: 20px; } \n",
48
- "#inner textarea {border: 0px}\n",
49
- "div.gradio-container {color: black}\n",
50
- "span.head {font-size: 60pt; font-family: cursive;}\n",
51
- "body {\n",
52
- " --text-sm: 15px;\n",
53
- " --text-md: 18px;\n",
54
- " --text-lg: 20px;\n",
55
- " --input-text-size: 20px;\n",
56
- " --section-text-size: 20px;\n",
57
- "}\n",
58
- "\"\"\""
59
- ]
60
- },
61
- {
62
- "cell_type": "code",
63
- "execution_count": null,
64
- "id": "30e34bad",
65
- "metadata": {},
66
- "outputs": [],
67
- "source": []
68
- },
69
- {
70
- "cell_type": "code",
71
- "execution_count": null,
72
- "id": "7cb4d4d9",
73
- "metadata": {},
74
- "outputs": [],
75
- "source": [
76
- "with gr.Blocks(css=CSS, theme=gr.themes.Monochrome()) as demo:\n",
77
- " gr.HTML(\"<center style='background:#B6B7BA'> <span class='head'>Mini</span><img src='https://user-images.githubusercontent.com/35882/227017900-0cacdfb7-37e2-47b1-9347-a233810d3544.png' width='20%' style='display:inline'><span class='head'>Chain</span></center><center> <br><a href='https://github.com/srush/minichain'>[library]</a> </center>\")\n",
78
- "\n",
79
- " gr.TabbedInterface([math_demo, qa, chat, gatsby, ner, bash, pal, stats, selfask, backtrack],\n",
80
- " [\"Math\", \"QA\", \"Chat\", \"Book\", \"NER\", \"Bash\", \"PAL\", \"Stats\", \"SelfAsk\", \"Backtrack\"],\n",
81
- " css = CSS)"
82
- ]
83
- },
84
- {
85
- "cell_type": "code",
86
- "execution_count": null,
87
- "id": "57ec58c2",
88
- "metadata": {
89
- "lines_to_next_cell": 2
90
- },
91
- "outputs": [],
92
- "source": [
93
- "demo.launch()"
94
- ]
95
- }
96
- ],
97
- "metadata": {
98
- "jupytext": {
99
- "cell_metadata_filter": "-all",
100
- "main_language": "python",
101
- "notebook_metadata_filter": "-all"
102
- }
103
- },
104
- "nbformat": 4,
105
- "nbformat_minor": 5
106
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
app.py CHANGED
@@ -9,8 +9,6 @@ from qa import gradio as qa
9
  from stats import gradio as stats
10
  from selfask import gradio as selfask
11
  from table import gradio as table
12
- from agent import gradio as agent
13
- from gradio_example import gradio as gradio_example
14
 
15
  CSS = """
16
  #clean div.form {border: 0px}
 
9
  from stats import gradio as stats
10
  from selfask import gradio as selfask
11
  from table import gradio as table
 
 
12
 
13
  CSS = """
14
  #clean div.form {border: 0px}
app.py~ DELETED
@@ -1,40 +0,0 @@
1
- import gradio as gr
2
- from chat import gradio as chat
3
- from ner import gradio as ner
4
- from math_demo import gradio as math_demo
5
- from bash import gradio as bash
6
- from pal import gradio as pal
7
- from gatsby import gradio as gatsby
8
- from qa import gradio as qa
9
- from stats import gradio as stats
10
- from selfask import gradio as selfask
11
- from backtrack import gradio as backtrack
12
- from table import gradio as table
13
- from gradio_example import gradio as gradio_example
14
-
15
- CSS = """
16
- #clean div.form {border: 0px}
17
- #response {border: 0px; background: #ffeec6}
18
- #prompt {border: 0px;background: aliceblue}
19
- div.gradio-container {color: black}
20
- span.head {font-size: 60pt; font-family: cursive;}
21
- body {
22
- --text-sm: 12px;
23
- --text-md: 16px;
24
- --text-lg: 18px;
25
- --input-text-size: 16px;
26
- --section-text-size: 16px;
27
- }
28
- """
29
-
30
-
31
-
32
- with gr.Blocks(css=CSS, theme=gr.themes.Monochrome()) as demo:
33
- gr.HTML("<center style='background:#B6B7BA'> <span class='head'>Mini</span><img src='https://user-images.githubusercontent.com/35882/227017900-0cacdfb7-37e2-47b1-9347-a233810d3544.png' width='20%' style='display:inline'><span class='head'>Chain</span></center><center> <br><a href='https://github.com/srush/minichain'>[library]</a> </center>")
34
-
35
- gr.TabbedInterface([math_demo, qa, chat, gatsby, ner, bash, pal, table, gradio_example, stats, selfask, backtrack],
36
- ["Math", "QA", "Chat", "Book", "NER", "Bash", "PAL", "Table", "Gradio", "Stats", "SelfAsk", "Backtrack"],
37
- css = CSS)
38
-
39
- demo.queue().launch()
40
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
backtrack.py DELETED
@@ -1,42 +0,0 @@
1
- # + tags=["hide_inp"]
2
- desc = """
3
- ### Backtrack on Failure
4
-
5
- Chain that backtracks on failure. [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/srush/MiniChain/blob/master/examples/backtrack.ipynb)
6
-
7
- """
8
- # -
9
-
10
- # $
11
- from minichain import prompt, Mock, show, OpenAI
12
- import minichain
13
-
14
- @prompt(Mock(["dog", "blue", "cat"]), stream=True)
15
- def prompt_generation(model):
16
- out = ""
17
- for token in model.stream(""):
18
- out += token
19
- yield out
20
- yield out
21
-
22
- @prompt(Mock(["No", "Yes"]), template="Answer 'yes' is {{query}} is a color. Answer:", stream=False)
23
- def prompt_validation(model, x):
24
- out = model(dict(query=x))
25
- if out.strip().lower().startswith("yes"):
26
- return x
27
- return model.fail(1)
28
-
29
- def run():
30
- x = prompt_generation()
31
- return prompt_validation(x)
32
- # $
33
-
34
- gradio = show(run,
35
- examples = [],
36
- subprompts=[prompt_generation, prompt_validation],
37
- code=open("backtrack.py", "r").read().split("$")[1].strip().strip("#").strip(),
38
- out_type="markdown"
39
- )
40
-
41
- if __name__ == "__main__":
42
- gradio.queue().launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
backtrack.py~ DELETED
@@ -1,38 +0,0 @@
1
- # + tags=["hide_inp"]
2
- desc = """
3
- ### Backtrack on Failure
4
-
5
- Chain that backtracks on failure. [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/srush/MiniChain/blob/master/examples/backtrack.ipynb)
6
-
7
- """
8
- # -
9
-
10
- # $
11
- from minichain import prompt, Mock, show, OpenAI
12
- import minichain
13
-
14
- @prompt(Mock(["dog", "blue", "cat"]))
15
- def prompt_generation(model):
16
- return model("")
17
-
18
- @prompt(OpenAI(), template="Answer 'yes' is {{query}} is a color. Answer:")
19
- def prompt_validation(model, x):
20
- out = model(dict(query=x))
21
- if out.strip().lower().startswith("yes"):
22
- return x
23
- return model.fail(1)
24
-
25
- def run():
26
- x = prompt_generation()
27
- return prompt_validation(x)
28
- # $
29
-
30
- gradio = show(run,
31
- examples = [],
32
- subprompts=[prompt_generation, prompt_validation],
33
- code=open("backtrack.py", "r").read().split("$")[1].strip().strip("#").strip(),
34
- out_type="markdown"
35
- )
36
-
37
- if __name__ == "__main__":
38
- gradio.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
base.ipynb DELETED
@@ -1,113 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": null,
6
- "id": "04b70841",
7
- "metadata": {},
8
- "outputs": [],
9
- "source": [
10
- "!pip install -q git+https://github.com/srush/MiniChain\n",
11
- "!git clone https://github.com/srush/MiniChain; cp -fr MiniChain/examples/* . "
12
- ]
13
- },
14
- {
15
- "cell_type": "markdown",
16
- "id": "f8ea4879",
17
- "metadata": {},
18
- "source": [
19
- "Prompt from ...\n"
20
- ]
21
- },
22
- {
23
- "cell_type": "code",
24
- "execution_count": null,
25
- "id": "0370e1bb",
26
- "metadata": {},
27
- "outputs": [],
28
- "source": [
29
- "prompt = \"\"\"\n",
30
- "Question: Who lived longer, Muhammad Ali or Alan Turing?\n",
31
- "Are follow up questions needed here: Yes.\n",
32
- "Follow up: How old was Muhammad Ali when he died?\n",
33
- "Intermediate answer: Muhammad Ali was 74 years old when he died.\n",
34
- "Follow up: How old was Alan Turing when he died?\n",
35
- "Intermediate answer: Alan Turing was 41 years old when he died.\n",
36
- "So the final answer is: Muhammad Ali\n",
37
- "\n",
38
- "Question: When was the founder of craigslist born?\n",
39
- "Are follow up questions needed here: Yes.\n",
40
- "Follow up: Who was the founder of craigslist?\n",
41
- "Intermediate answer: Craigslist was founded by Craig Newmark.\n",
42
- "Follow up: When was Craig Newmark born?\n",
43
- "Intermediate answer: Craig Newmark was born on December 6, 1952.\n",
44
- "So the final answer is: December 6, 1952\n",
45
- "\n",
46
- "Question: Who was the maternal grandfather of George Washington?\n",
47
- "Are follow up questions needed here: Yes.\n",
48
- "Follow up: Who was the mother of George Washington?\n",
49
- "Intermediate answer: The mother of George Washington was Mary Ball Washington.\n",
50
- "Follow up: Who was the father of Mary Ball Washington?\n",
51
- "Intermediate answer: The father of Mary Ball Washington was Joseph Ball.\n",
52
- "So the final answer is: Joseph Ball\n",
53
- "\n",
54
- "Question: Are both the directors of Jaws and Casino Royale from the same country?\n",
55
- "Are follow up questions needed here: Yes.\n",
56
- "Follow up: Who is the director of Jaws?\n",
57
- "Intermediate answer: The director of Jaws is Steven Spielberg.\n",
58
- "Follow up: Where is Steven Spielberg from?\n",
59
- "Intermediate answer: The United States.\n",
60
- "Follow up: Who is the director of Casino Royale?\n",
61
- "Intermediate answer: The director of Casino Royale is Martin Campbell.\n",
62
- "Follow up: Where is Martin Campbell from?\n",
63
- "Intermediate answer: New Zealand.\n",
64
- "So the final answer is: No\n",
65
- "\n",
66
- "Question: {{input}}\n",
67
- "Are followup questions needed here: {% if agent_scratchpad %}Yes{%else%}No{% endif %}.\n",
68
- "\"\"\""
69
- ]
70
- },
71
- {
72
- "cell_type": "code",
73
- "execution_count": null,
74
- "id": "82a93b59",
75
- "metadata": {
76
- "lines_to_next_cell": 1
77
- },
78
- "outputs": [],
79
- "source": [
80
- "import jinja2"
81
- ]
82
- },
83
- {
84
- "cell_type": "code",
85
- "execution_count": null,
86
- "id": "4e5105b2",
87
- "metadata": {},
88
- "outputs": [],
89
- "source": [
90
- "class SelfAsk:\n",
91
- " def render(self, input: str, agent_scratchpad: bool):\n",
92
- " return jinja.render(prompt, dict(input=input,\n",
93
- " agent_scatchpad=agent_scratchpad))\n",
94
- "\n",
95
- " def parse(self, response: str):\n",
96
- " pass\n",
97
- "\n",
98
- "\n",
99
- " def stop(self):\n",
100
- " return []"
101
- ]
102
- }
103
- ],
104
- "metadata": {
105
- "jupytext": {
106
- "cell_metadata_filter": "-all",
107
- "main_language": "python",
108
- "notebook_metadata_filter": "-all"
109
- }
110
- },
111
- "nbformat": 4,
112
- "nbformat_minor": 5
113
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
base.py DELETED
@@ -1,57 +0,0 @@
1
- # Prompt from ...
2
- #
3
-
4
- prompt = """
5
- Question: Who lived longer, Muhammad Ali or Alan Turing?
6
- Are follow up questions needed here: Yes.
7
- Follow up: How old was Muhammad Ali when he died?
8
- Intermediate answer: Muhammad Ali was 74 years old when he died.
9
- Follow up: How old was Alan Turing when he died?
10
- Intermediate answer: Alan Turing was 41 years old when he died.
11
- So the final answer is: Muhammad Ali
12
-
13
- Question: When was the founder of craigslist born?
14
- Are follow up questions needed here: Yes.
15
- Follow up: Who was the founder of craigslist?
16
- Intermediate answer: Craigslist was founded by Craig Newmark.
17
- Follow up: When was Craig Newmark born?
18
- Intermediate answer: Craig Newmark was born on December 6, 1952.
19
- So the final answer is: December 6, 1952
20
-
21
- Question: Who was the maternal grandfather of George Washington?
22
- Are follow up questions needed here: Yes.
23
- Follow up: Who was the mother of George Washington?
24
- Intermediate answer: The mother of George Washington was Mary Ball Washington.
25
- Follow up: Who was the father of Mary Ball Washington?
26
- Intermediate answer: The father of Mary Ball Washington was Joseph Ball.
27
- So the final answer is: Joseph Ball
28
-
29
- Question: Are both the directors of Jaws and Casino Royale from the same country?
30
- Are follow up questions needed here: Yes.
31
- Follow up: Who is the director of Jaws?
32
- Intermediate answer: The director of Jaws is Steven Spielberg.
33
- Follow up: Where is Steven Spielberg from?
34
- Intermediate answer: The United States.
35
- Follow up: Who is the director of Casino Royale?
36
- Intermediate answer: The director of Casino Royale is Martin Campbell.
37
- Follow up: Where is Martin Campbell from?
38
- Intermediate answer: New Zealand.
39
- So the final answer is: No
40
-
41
- Question: {{input}}
42
- Are followup questions needed here: {% if agent_scratchpad %}Yes{%else%}No{% endif %}.
43
- """
44
-
45
- import jinja2
46
-
47
- class SelfAsk:
48
- def render(self, input: str, agent_scratchpad: bool):
49
- return jinja.render(prompt, dict(input=input,
50
- agent_scatchpad=agent_scratchpad))
51
-
52
- def parse(self, response: str):
53
- pass
54
-
55
-
56
- def stop(self):
57
- return []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
base.sh DELETED
@@ -1,2 +0,0 @@
1
- export OPENAI_API_KEY="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"
2
- export SERP_KEY="593a073fa4c730efe918e592a538b36e80841bc8f8dd4070c1566920f75ba140"
 
 
 
base.sh~ DELETED
@@ -1,2 +0,0 @@
1
- export OPENAI_KEY="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"
2
- export SERP_KEY="593a073fa4c730efe918e592a538b36e80841bc8f8dd4070c1566920f75ba140"
 
 
 
bash.html DELETED
The diff for this file is too large to render. See raw diff
 
bash.log CHANGED
@@ -1,16 +1,18 @@
1
- {"action_status": "started", "timestamp": 1678804794.3736765, "task_uuid": "b91a9977-eb2c-4ee4-8081-2c9c11c5c84b", "action_type": "bash", "task_level": [1]}
2
- {"action_status": "succeeded", "timestamp": 1678804794.3737779, "task_uuid": "b91a9977-eb2c-4ee4-8081-2c9c11c5c84b", "action_type": "bash", "task_level": [2]}
3
- {"action_status": "started", "timestamp": 1678804794.407293, "task_uuid": "a24f4aa6-8e24-4d6b-aa12-0c326d842918", "action_type": "pal", "task_level": [1]}
4
- {"action_status": "succeeded", "timestamp": 1678804794.4074926, "task_uuid": "a24f4aa6-8e24-4d6b-aa12-0c326d842918", "action_type": "pal", "task_level": [2]}
5
- {"action_status": "started", "timestamp": 1678804794.616296, "task_uuid": "45a836db-19bb-4bc5-a29b-d9a3933dd175", "action_type": "gatsby", "task_level": [1]}
6
- {"action_status": "succeeded", "timestamp": 1678804794.616455, "task_uuid": "45a836db-19bb-4bc5-a29b-d9a3933dd175", "action_type": "gatsby", "task_level": [2]}
7
- {"action_status": "started", "timestamp": 1678804794.7338963, "task_uuid": "dc9993f0-9c8a-42a8-8f7e-bc4b40be1a1e", "action_type": "qa", "task_level": [1]}
8
- {"action_status": "succeeded", "timestamp": 1678804794.7341123, "task_uuid": "dc9993f0-9c8a-42a8-8f7e-bc4b40be1a1e", "action_type": "qa", "task_level": [2]}
9
- {"action_status": "started", "timestamp": 1678804794.8375309, "task_uuid": "dd1251af-7770-460d-ac61-85db28fd24df", "action_type": "stats", "task_level": [1]}
10
- {"action_status": "succeeded", "timestamp": 1678804794.8376832, "task_uuid": "dd1251af-7770-460d-ac61-85db28fd24df", "action_type": "stats", "task_level": [2]}
11
- {"action_status": "started", "timestamp": 1678804807.8764367, "task_uuid": "3130f0e2-8d6f-4992-9e12-8f90e9aa96c4", "action_type": "<class 'math_demo.MathPrompt'>", "task_level": [1]}
12
- {"input": {"question": "What is the sum of the powers of 3 (3^i) that are smaller than 100?"}, "action_status": "started", "timestamp": 1678804807.876612, "task_uuid": "3130f0e2-8d6f-4992-9e12-8f90e9aa96c4", "action_type": "Input Function", "task_level": [2, 1]}
13
- {"action_status": "succeeded", "timestamp": 1678804807.8774285, "task_uuid": "3130f0e2-8d6f-4992-9e12-8f90e9aa96c4", "action_type": "Input Function", "task_level": [2, 2]}
14
- {"prompt": "#### Question:\n\n* What is 37593 * 67?\n\n#### Code:\n\n```python\nprint(37593 * 67)\n```\n\n#### Question:\n\n* Janet's ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes muffins for her friends every day with four. She sells the remainder at the farmers' market daily for $2 per fresh duck egg. How much in dollars does she make every day at the farmers' market?\n\n#### Code:\n\n```python\nprint((16-3-4)*2)\n```\n\n#### Question:\n\n* How many of the integers between 0 and 99 inclusive are divisible by 8?\n\n#### Code:\n\n```python\ncount = 0\nfor i in range(0, 99+1):\n if i % 8 == 0: count += 1\nprint(count)\n```\n\n#### Question:\n\n* A robe takes 2 bolts of blue fiber and half that much white fiber. How many bolts in total does it take?\n\n#### Code:\n\n```python\nprint(2 + 2/2)\n```\n\n#### Question:\n\n* What is the sum of the powers of 3 (3^i) that are smaller than 100?\n\n#### Code:", "action_status": "started", "timestamp": 1678804807.877532, "task_uuid": "3130f0e2-8d6f-4992-9e12-8f90e9aa96c4", "action_type": "Prompted", "task_level": [3, 1]}
15
- {"exception": "builtins.AssertionError", "reason": "Need an OPENAI_KEY. Get one here https://openai.com/api/", "action_status": "failed", "timestamp": 1678804807.8874092, "task_uuid": "3130f0e2-8d6f-4992-9e12-8f90e9aa96c4", "action_type": "Prompted", "task_level": [3, 2]}
16
- {"exception": "builtins.AssertionError", "reason": "Need an OPENAI_KEY. Get one here https://openai.com/api/", "action_status": "failed", "timestamp": 1678804807.8875778, "task_uuid": "3130f0e2-8d6f-4992-9e12-8f90e9aa96c4", "action_type": "<class 'math_demo.MathPrompt'>", "task_level": [4]}
 
 
 
1
+ {"action_status": "started", "timestamp": 1678722984.131601, "task_uuid": "b5da4857-2f0d-45f2-9c52-902cb1cbc204", "action_type": "bash", "task_level": [1]}
2
+ {"action_status": "succeeded", "timestamp": 1678722984.131747, "task_uuid": "b5da4857-2f0d-45f2-9c52-902cb1cbc204", "action_type": "bash", "task_level": [2]}
3
+ {"action_status": "started", "timestamp": 1678722991.9121287, "task_uuid": "79c36874-bc57-4f5c-99c8-a376d9a35996", "action_type": "<class '__main__.CLIPrompt'>", "task_level": [1]}
4
+ {"input": {"question": "Go up one directory, and then into the minichain directory,and list the files in the directory"}, "action_status": "started", "timestamp": 1678722991.912252, "task_uuid": "79c36874-bc57-4f5c-99c8-a376d9a35996", "action_type": "Input Function", "task_level": [2, 1]}
5
+ {"action_status": "succeeded", "timestamp": 1678722991.9134278, "task_uuid": "79c36874-bc57-4f5c-99c8-a376d9a35996", "action_type": "Input Function", "task_level": [2, 2]}
6
+ {"prompt": "If someone asks you to perform a task, your job is to come up with a series of bash commands that will perform the task. There is no need to put \"#!/bin/bash\" in your answer. Make sure to reason step by step, using this format:\n\nQuestion: \"copy the files in the directory named 'target' into a new directory at the same level as target called 'myNewDirectory'\"\n\nI need to take the following actions:\n- List all files in the directory\n- Create a new directory\n- Copy the files from the first directory into the second directory\n```bash\nls\nmkdir myNewDirectory\ncp -r target/* myNewDirectory\n```\n\nThat is the format. Begin!\n\nQuestion: \"Go up one directory, and then into the minichain directory,and list the files in the directory\"", "action_status": "started", "timestamp": 1678722991.9135177, "task_uuid": "79c36874-bc57-4f5c-99c8-a376d9a35996", "action_type": "Prompted", "task_level": [3, 1]}
7
+ {"action_status": "succeeded", "timestamp": 1678722992.8956733, "task_uuid": "79c36874-bc57-4f5c-99c8-a376d9a35996", "action_type": "Prompted", "task_level": [3, 2]}
8
+ {"result": "\n\n```bash\ncd ..\ncd minichain\nls\n```", "action_status": "started", "timestamp": 1678722992.895786, "task_uuid": "79c36874-bc57-4f5c-99c8-a376d9a35996", "action_type": "Result", "task_level": [4, 1]}
9
+ {"action_status": "succeeded", "timestamp": 1678722992.895828, "task_uuid": "79c36874-bc57-4f5c-99c8-a376d9a35996", "action_type": "Result", "task_level": [4, 2]}
10
+ {"action_status": "succeeded", "timestamp": 1678722992.8958883, "task_uuid": "79c36874-bc57-4f5c-99c8-a376d9a35996", "action_type": "<class '__main__.CLIPrompt'>", "task_level": [5]}
11
+ {"action_status": "started", "timestamp": 1678722992.8959506, "task_uuid": "8b4569fb-f15b-4e15-a857-00ddbf7756ac", "action_type": "<class '__main__.BashPrompt'>", "task_level": [1]}
12
+ {"input": ["cd ..", "cd minichain", "ls"], "action_status": "started", "timestamp": 1678722992.8959756, "task_uuid": "8b4569fb-f15b-4e15-a857-00ddbf7756ac", "action_type": "Input Function", "task_level": [2, 1]}
13
+ {"action_status": "succeeded", "timestamp": 1678722992.8960001, "task_uuid": "8b4569fb-f15b-4e15-a857-00ddbf7756ac", "action_type": "Input Function", "task_level": [2, 2]}
14
+ {"prompt": "cd ..;cd minichain;ls", "action_status": "started", "timestamp": 1678722992.8960173, "task_uuid": "8b4569fb-f15b-4e15-a857-00ddbf7756ac", "action_type": "Prompted", "task_level": [3, 1]}
15
+ {"action_status": "succeeded", "timestamp": 1678722992.9118538, "task_uuid": "8b4569fb-f15b-4e15-a857-00ddbf7756ac", "action_type": "Prompted", "task_level": [3, 2]}
16
+ {"result": "backend.py\nbase.py\n__init__.py\nprompts.py\n__pycache__\ntemplates\n", "action_status": "started", "timestamp": 1678722992.9120688, "task_uuid": "8b4569fb-f15b-4e15-a857-00ddbf7756ac", "action_type": "Result", "task_level": [4, 1]}
17
+ {"action_status": "succeeded", "timestamp": 1678722992.9121852, "task_uuid": "8b4569fb-f15b-4e15-a857-00ddbf7756ac", "action_type": "Result", "task_level": [4, 2]}
18
+ {"action_status": "succeeded", "timestamp": 1678722992.9122384, "task_uuid": "8b4569fb-f15b-4e15-a857-00ddbf7756ac", "action_type": "<class '__main__.BashPrompt'>", "task_level": [5]}
bash.pmpt.tpl~ DELETED
File without changes
bash.py~ DELETED
@@ -1,21 +0,0 @@
1
-
2
- class Bash(JinjaPrompt[]):
3
- prompt_template = """If someone asks you to perform a task, your job is to come up with a series of bash commands that will perform the task. There is no need to put "#!/bin/bash" in your answer. Make sure to reason step by step, using this format:
4
-
5
- Question: "copy the files in the directory named 'target' into a new directory at the same level as target called 'myNewDirectory'"
6
-
7
- I need to take the following actions:
8
- - List all files in the directory
9
- - Create a new directory
10
- - Copy the files from the first directory into the second directory
11
- ```bash
12
- ls
13
- mkdir myNewDirectory
14
- cp -r target/* myNewDirectory
15
- ```
16
-
17
- That is the format. Begin!
18
-
19
- Question: {question}"""
20
-
21
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
chat.log DELETED
@@ -1,22 +0,0 @@
1
- {"action_status": "started", "timestamp": 1678804794.0478587, "task_uuid": "ee9d703e-b2a7-49c8-bb88-44836746c9aa", "action_type": "chat", "task_level": [1]}
2
- {"action_status": "succeeded", "timestamp": 1678804794.0480256, "task_uuid": "ee9d703e-b2a7-49c8-bb88-44836746c9aa", "action_type": "chat", "task_level": [2]}
3
- {"action_status": "started", "timestamp": 1678804794.3142183, "task_uuid": "2447e362-ebdb-4151-bb2b-70ada0c012fa", "action_type": "ner", "task_level": [1]}
4
- {"action_status": "succeeded", "timestamp": 1678804794.314325, "task_uuid": "2447e362-ebdb-4151-bb2b-70ada0c012fa", "action_type": "ner", "task_level": [2]}
5
- {"action_status": "started", "timestamp": 1678804794.3484201, "task_uuid": "051d71c8-5062-4319-a533-fdf97e822b41", "action_type": "math", "task_level": [1]}
6
- {"action_status": "succeeded", "timestamp": 1678804794.3485305, "task_uuid": "051d71c8-5062-4319-a533-fdf97e822b41", "action_type": "math", "task_level": [2]}
7
- {"action_status": "started", "timestamp": 1678804794.3736765, "task_uuid": "b91a9977-eb2c-4ee4-8081-2c9c11c5c84b", "action_type": "bash", "task_level": [1]}
8
- {"action_status": "succeeded", "timestamp": 1678804794.3737779, "task_uuid": "b91a9977-eb2c-4ee4-8081-2c9c11c5c84b", "action_type": "bash", "task_level": [2]}
9
- {"action_status": "started", "timestamp": 1678804794.407293, "task_uuid": "a24f4aa6-8e24-4d6b-aa12-0c326d842918", "action_type": "pal", "task_level": [1]}
10
- {"action_status": "succeeded", "timestamp": 1678804794.4074926, "task_uuid": "a24f4aa6-8e24-4d6b-aa12-0c326d842918", "action_type": "pal", "task_level": [2]}
11
- {"action_status": "started", "timestamp": 1678804794.616296, "task_uuid": "45a836db-19bb-4bc5-a29b-d9a3933dd175", "action_type": "gatsby", "task_level": [1]}
12
- {"action_status": "succeeded", "timestamp": 1678804794.616455, "task_uuid": "45a836db-19bb-4bc5-a29b-d9a3933dd175", "action_type": "gatsby", "task_level": [2]}
13
- {"action_status": "started", "timestamp": 1678804794.7338963, "task_uuid": "dc9993f0-9c8a-42a8-8f7e-bc4b40be1a1e", "action_type": "qa", "task_level": [1]}
14
- {"action_status": "succeeded", "timestamp": 1678804794.7341123, "task_uuid": "dc9993f0-9c8a-42a8-8f7e-bc4b40be1a1e", "action_type": "qa", "task_level": [2]}
15
- {"action_status": "started", "timestamp": 1678804794.8375309, "task_uuid": "dd1251af-7770-460d-ac61-85db28fd24df", "action_type": "stats", "task_level": [1]}
16
- {"action_status": "succeeded", "timestamp": 1678804794.8376832, "task_uuid": "dd1251af-7770-460d-ac61-85db28fd24df", "action_type": "stats", "task_level": [2]}
17
- {"action_status": "started", "timestamp": 1678804807.8764367, "task_uuid": "3130f0e2-8d6f-4992-9e12-8f90e9aa96c4", "action_type": "<class 'math_demo.MathPrompt'>", "task_level": [1]}
18
- {"input": {"question": "What is the sum of the powers of 3 (3^i) that are smaller than 100?"}, "action_status": "started", "timestamp": 1678804807.876612, "task_uuid": "3130f0e2-8d6f-4992-9e12-8f90e9aa96c4", "action_type": "Input Function", "task_level": [2, 1]}
19
- {"action_status": "succeeded", "timestamp": 1678804807.8774285, "task_uuid": "3130f0e2-8d6f-4992-9e12-8f90e9aa96c4", "action_type": "Input Function", "task_level": [2, 2]}
20
- {"prompt": "#### Question:\n\n* What is 37593 * 67?\n\n#### Code:\n\n```python\nprint(37593 * 67)\n```\n\n#### Question:\n\n* Janet's ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes muffins for her friends every day with four. She sells the remainder at the farmers' market daily for $2 per fresh duck egg. How much in dollars does she make every day at the farmers' market?\n\n#### Code:\n\n```python\nprint((16-3-4)*2)\n```\n\n#### Question:\n\n* How many of the integers between 0 and 99 inclusive are divisible by 8?\n\n#### Code:\n\n```python\ncount = 0\nfor i in range(0, 99+1):\n if i % 8 == 0: count += 1\nprint(count)\n```\n\n#### Question:\n\n* A robe takes 2 bolts of blue fiber and half that much white fiber. How many bolts in total does it take?\n\n#### Code:\n\n```python\nprint(2 + 2/2)\n```\n\n#### Question:\n\n* What is the sum of the powers of 3 (3^i) that are smaller than 100?\n\n#### Code:", "action_status": "started", "timestamp": 1678804807.877532, "task_uuid": "3130f0e2-8d6f-4992-9e12-8f90e9aa96c4", "action_type": "Prompted", "task_level": [3, 1]}
21
- {"exception": "builtins.AssertionError", "reason": "Need an OPENAI_KEY. Get one here https://openai.com/api/", "action_status": "failed", "timestamp": 1678804807.8874092, "task_uuid": "3130f0e2-8d6f-4992-9e12-8f90e9aa96c4", "action_type": "Prompted", "task_level": [3, 2]}
22
- {"exception": "builtins.AssertionError", "reason": "Need an OPENAI_KEY. Get one here https://openai.com/api/", "action_status": "failed", "timestamp": 1678804807.8875778, "task_uuid": "3130f0e2-8d6f-4992-9e12-8f90e9aa96c4", "action_type": "<class 'math_demo.MathPrompt'>", "task_level": [4]}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
chat.py~ DELETED
@@ -1,67 +0,0 @@
1
-
2
-
3
- import warnings
4
- from dataclasses import dataclass
5
- from typing import List, Tuple
6
- from IPython.display import Markdown, display
7
- import minichain
8
-
9
- # + tags=["hide_inp"]
10
- warnings.filterwarnings("ignore")
11
- # -
12
-
13
-
14
- # Generic stateful Memory
15
-
16
- MEMORY = 2
17
-
18
- @dataclass
19
- class State:
20
- memory: List[Tuple[str, str]]
21
- human_input: str = ""
22
-
23
- def push(self, response: str) -> "State":
24
- memory = self.memory if len(self.memory) < MEMORY else self.memory[1:]
25
- return State(memory + [(self.human_input, response)])
26
-
27
- # Chat prompt with memory
28
-
29
- class ChatPrompt(minichain.TemplatePrompt):
30
- template_file = "chatgpt.pmpt.tpl"
31
- def parse(self, out: str, inp: State) -> State:
32
- result = out.split("Assistant:")[-1]
33
- return inp.push(result)
34
-
35
- class Human(minichain.Prompt):
36
- def parse(self, out: str, inp: State) -> State:
37
- return inp.human_input = out
38
-
39
-
40
- with minichain.start_chain("chat") as backend:
41
- prompt = ChatPrompt(backend.OpenAI())
42
- state = State([])
43
-
44
- gradio = prompt.to_gradio(fields= ["question"],
45
- state= {"state", state},
46
- examples=['Go up one directory, and then into the minichain directory,'
47
- 'and list the files in the directory'],
48
- out_type="markdown"
49
- )
50
- if __name__ == "__main__":
51
- gradio.launch()
52
-
53
- # for i in range(len(fake_human)):
54
- # human.chain(prompt)
55
-
56
-
57
- fake_human = [
58
- "I want you to act as a Linux terminal. I will type commands and you will reply with what the terminal should show. I want you to only reply with the terminal output inside one unique code block, and nothing else. Do not write explanations. Do not type commands unless I instruct you to do so. When I need to tell you something in English I will do so by putting text inside curly brackets {like this}. My first command is pwd.",
59
- "ls ~",
60
- "cd ~",
61
- "{Please make a file jokes.txt inside and put some jokes inside}",
62
- """echo -e "x=lambda y:y*5+3;print('Result:' + str(x(6)))" > run.py && python3 run.py""",
63
- """echo -e "print(list(filter(lambda x: all(x%d for d in range(2,x)),range(2,3**10)))[:10])" > run.py && python3 run.py""",
64
- """echo -e "echo 'Hello from Docker" > entrypoint.sh && echo -e "FROM ubuntu:20.04\nCOPY entrypoint.sh entrypoint.sh\nENTRYPOINT [\"/bin/sh\",\"entrypoint.sh\"]">Dockerfile && docker build . -t my_docker_image && docker run -t my_docker_image""",
65
- "nvidia-smi"
66
- ]
67
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
chatgpt.ipynb DELETED
@@ -1,1099 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "markdown",
5
- "id": "3a1d57c7",
6
- "metadata": {},
7
- "source": [
8
- "# ChatGPT"
9
- ]
10
- },
11
- {
12
- "cell_type": "markdown",
13
- "id": "4751e660",
14
- "metadata": {
15
- "lines_to_next_cell": 2
16
- },
17
- "source": [
18
- "\"ChatGPT\" like examples. Adapted from\n",
19
- "[LangChain](https://langchain.readthedocs.io/en/latest/modules/memory/examples/chatgpt_clone.html)'s\n",
20
- "version of this [blog\n",
21
- "post](https://www.engraved.blog/building-a-virtual-machine-inside/)."
22
- ]
23
- },
24
- {
25
- "cell_type": "code",
26
- "execution_count": 1,
27
- "id": "0acb2e7c",
28
- "metadata": {
29
- "execution": {
30
- "iopub.execute_input": "2023-02-27T16:23:05.736481Z",
31
- "iopub.status.busy": "2023-02-27T16:23:05.736154Z",
32
- "iopub.status.idle": "2023-02-27T16:23:05.928562Z",
33
- "shell.execute_reply": "2023-02-27T16:23:05.927370Z"
34
- }
35
- },
36
- "outputs": [],
37
- "source": [
38
- "import warnings\n",
39
- "from dataclasses import dataclass\n",
40
- "from typing import List, Tuple\n",
41
- "from IPython.display import Markdown, display\n",
42
- "import minichain"
43
- ]
44
- },
45
- {
46
- "cell_type": "code",
47
- "execution_count": 2,
48
- "id": "53e77d82",
49
- "metadata": {
50
- "execution": {
51
- "iopub.execute_input": "2023-02-27T16:23:05.933659Z",
52
- "iopub.status.busy": "2023-02-27T16:23:05.932423Z",
53
- "iopub.status.idle": "2023-02-27T16:23:05.937782Z",
54
- "shell.execute_reply": "2023-02-27T16:23:05.937143Z"
55
- },
56
- "lines_to_next_cell": 2,
57
- "tags": [
58
- "hide_inp"
59
- ]
60
- },
61
- "outputs": [],
62
- "source": [
63
- "warnings.filterwarnings(\"ignore\")"
64
- ]
65
- },
66
- {
67
- "cell_type": "markdown",
68
- "id": "e4fbd918",
69
- "metadata": {},
70
- "source": [
71
- "Generic stateful Memory"
72
- ]
73
- },
74
- {
75
- "cell_type": "code",
76
- "execution_count": 3,
77
- "id": "e2c75e33",
78
- "metadata": {
79
- "execution": {
80
- "iopub.execute_input": "2023-02-27T16:23:05.942500Z",
81
- "iopub.status.busy": "2023-02-27T16:23:05.941348Z",
82
- "iopub.status.idle": "2023-02-27T16:23:05.946048Z",
83
- "shell.execute_reply": "2023-02-27T16:23:05.945445Z"
84
- },
85
- "lines_to_next_cell": 1
86
- },
87
- "outputs": [],
88
- "source": [
89
- "MEMORY = 2"
90
- ]
91
- },
92
- {
93
- "cell_type": "code",
94
- "execution_count": 4,
95
- "id": "4bb6e612",
96
- "metadata": {
97
- "execution": {
98
- "iopub.execute_input": "2023-02-27T16:23:05.950846Z",
99
- "iopub.status.busy": "2023-02-27T16:23:05.949709Z",
100
- "iopub.status.idle": "2023-02-27T16:23:05.956371Z",
101
- "shell.execute_reply": "2023-02-27T16:23:05.955692Z"
102
- },
103
- "lines_to_next_cell": 1
104
- },
105
- "outputs": [],
106
- "source": [
107
- "@dataclass\n",
108
- "class State:\n",
109
- " memory: List[Tuple[str, str]]\n",
110
- " human_input: str = \"\"\n",
111
- "\n",
112
- " def push(self, response: str) -> \"State\":\n",
113
- " memory = self.memory if len(self.memory) < MEMORY else self.memory[1:]\n",
114
- " return State(memory + [(self.human_input, response)])"
115
- ]
116
- },
117
- {
118
- "cell_type": "markdown",
119
- "id": "7b958184",
120
- "metadata": {},
121
- "source": [
122
- "Chat prompt with memory"
123
- ]
124
- },
125
- {
126
- "cell_type": "code",
127
- "execution_count": 5,
128
- "id": "651c6a01",
129
- "metadata": {
130
- "execution": {
131
- "iopub.execute_input": "2023-02-27T16:23:05.961370Z",
132
- "iopub.status.busy": "2023-02-27T16:23:05.960177Z",
133
- "iopub.status.idle": "2023-02-27T16:23:05.965742Z",
134
- "shell.execute_reply": "2023-02-27T16:23:05.965181Z"
135
- },
136
- "lines_to_next_cell": 1
137
- },
138
- "outputs": [],
139
- "source": [
140
- "class ChatPrompt(minichain.TemplatePrompt):\n",
141
- " template_file = \"chatgpt.pmpt.tpl\"\n",
142
- " def parse(self, out: str, inp: State) -> State:\n",
143
- " result = out.split(\"Assistant:\")[-1]\n",
144
- " return inp.push(result)"
145
- ]
146
- },
147
- {
148
- "cell_type": "code",
149
- "execution_count": 6,
150
- "id": "2594b95f",
151
- "metadata": {
152
- "execution": {
153
- "iopub.execute_input": "2023-02-27T16:23:05.968305Z",
154
- "iopub.status.busy": "2023-02-27T16:23:05.967862Z",
155
- "iopub.status.idle": "2023-02-27T16:23:05.971369Z",
156
- "shell.execute_reply": "2023-02-27T16:23:05.970873Z"
157
- }
158
- },
159
- "outputs": [],
160
- "source": [
161
- "fake_human = [\n",
162
- " \"I want you to act as a Linux terminal. I will type commands and you will reply with what the terminal should show. I want you to only reply with the terminal output inside one unique code block, and nothing else. Do not write explanations. Do not type commands unless I instruct you to do so. When I need to tell you something in English I will do so by putting text inside curly brackets {like this}. My first command is pwd.\",\n",
163
- " \"ls ~\",\n",
164
- " \"cd ~\",\n",
165
- " \"{Please make a file jokes.txt inside and put some jokes inside}\",\n",
166
- " \"\"\"echo -e \"x=lambda y:y*5+3;print('Result:' + str(x(6)))\" > run.py && python3 run.py\"\"\",\n",
167
- " \"\"\"echo -e \"print(list(filter(lambda x: all(x%d for d in range(2,x)),range(2,3**10)))[:10])\" > run.py && python3 run.py\"\"\",\n",
168
- " \"\"\"echo -e \"echo 'Hello from Docker\" > entrypoint.sh && echo -e \"FROM ubuntu:20.04\\nCOPY entrypoint.sh entrypoint.sh\\nENTRYPOINT [\\\"/bin/sh\\\",\\\"entrypoint.sh\\\"]\">Dockerfile && docker build . -t my_docker_image && docker run -t my_docker_image\"\"\",\n",
169
- " \"nvidia-smi\"\n",
170
- "]"
171
- ]
172
- },
173
- {
174
- "cell_type": "code",
175
- "execution_count": 7,
176
- "id": "200f6f4f",
177
- "metadata": {
178
- "execution": {
179
- "iopub.execute_input": "2023-02-27T16:23:05.973893Z",
180
- "iopub.status.busy": "2023-02-27T16:23:05.973504Z",
181
- "iopub.status.idle": "2023-02-27T16:23:39.934620Z",
182
- "shell.execute_reply": "2023-02-27T16:23:39.932059Z"
183
- },
184
- "lines_to_next_cell": 2
185
- },
186
- "outputs": [
187
- {
188
- "data": {
189
- "text/markdown": [
190
- "**Human:** <span style=\"color: blue\">I want you to act as a Linux terminal. I will type commands and you will reply with what the terminal should show. I want you to only reply with the terminal output inside one unique code block, and nothing else. Do not write explanations. Do not type commands unless I instruct you to do so. When I need to tell you something in English I will do so by putting text inside curly brackets {like this}. My first command is pwd.</span>"
191
- ],
192
- "text/plain": [
193
- "<IPython.core.display.Markdown object>"
194
- ]
195
- },
196
- "metadata": {},
197
- "output_type": "display_data"
198
- },
199
- {
200
- "data": {
201
- "text/markdown": [
202
- "**Assistant:** \n",
203
- "```\n",
204
- "$ pwd\n",
205
- "/\n",
206
- "```"
207
- ],
208
- "text/plain": [
209
- "<IPython.core.display.Markdown object>"
210
- ]
211
- },
212
- "metadata": {},
213
- "output_type": "display_data"
214
- },
215
- {
216
- "data": {
217
- "text/markdown": [
218
- "--------------"
219
- ],
220
- "text/plain": [
221
- "<IPython.core.display.Markdown object>"
222
- ]
223
- },
224
- "metadata": {},
225
- "output_type": "display_data"
226
- },
227
- {
228
- "data": {
229
- "text/markdown": [
230
- "**Human:** <span style=\"color: blue\">ls ~</span>"
231
- ],
232
- "text/plain": [
233
- "<IPython.core.display.Markdown object>"
234
- ]
235
- },
236
- "metadata": {},
237
- "output_type": "display_data"
238
- },
239
- {
240
- "data": {
241
- "text/markdown": [
242
- "**Assistant:** \n",
243
- "```\n",
244
- "$ ls ~\n",
245
- "Desktop/ Documents/ Downloads/ Music/ Pictures/ Public/ Templates/ Videos/\n",
246
- "```"
247
- ],
248
- "text/plain": [
249
- "<IPython.core.display.Markdown object>"
250
- ]
251
- },
252
- "metadata": {},
253
- "output_type": "display_data"
254
- },
255
- {
256
- "data": {
257
- "text/markdown": [
258
- "--------------"
259
- ],
260
- "text/plain": [
261
- "<IPython.core.display.Markdown object>"
262
- ]
263
- },
264
- "metadata": {},
265
- "output_type": "display_data"
266
- },
267
- {
268
- "data": {
269
- "text/markdown": [
270
- "**Human:** <span style=\"color: blue\">cd ~</span>"
271
- ],
272
- "text/plain": [
273
- "<IPython.core.display.Markdown object>"
274
- ]
275
- },
276
- "metadata": {},
277
- "output_type": "display_data"
278
- },
279
- {
280
- "data": {
281
- "text/markdown": [
282
- "**Assistant:** \n",
283
- "```\n",
284
- "$ cd ~\n",
285
- "$ pwd\n",
286
- "/home/username\n",
287
- "```"
288
- ],
289
- "text/plain": [
290
- "<IPython.core.display.Markdown object>"
291
- ]
292
- },
293
- "metadata": {},
294
- "output_type": "display_data"
295
- },
296
- {
297
- "data": {
298
- "text/markdown": [
299
- "--------------"
300
- ],
301
- "text/plain": [
302
- "<IPython.core.display.Markdown object>"
303
- ]
304
- },
305
- "metadata": {},
306
- "output_type": "display_data"
307
- },
308
- {
309
- "data": {
310
- "text/markdown": [
311
- "**Human:** <span style=\"color: blue\">{Please make a file jokes.txt inside and put some jokes inside}</span>"
312
- ],
313
- "text/plain": [
314
- "<IPython.core.display.Markdown object>"
315
- ]
316
- },
317
- "metadata": {},
318
- "output_type": "display_data"
319
- },
320
- {
321
- "data": {
322
- "text/markdown": [
323
- "**Assistant:** \n",
324
- "\n",
325
- "```\n",
326
- "$ touch jokes.txt\n",
327
- "$ echo \"Why did the chicken cross the road? To get to the other side!\" >> jokes.txt\n",
328
- "$ echo \"What did the fish say when it hit the wall? Dam!\" >> jokes.txt\n",
329
- "$ echo \"Why did the scarecrow win the Nobel Prize? Because he was outstanding in his field!\" >> jokes.txt\n",
330
- "```"
331
- ],
332
- "text/plain": [
333
- "<IPython.core.display.Markdown object>"
334
- ]
335
- },
336
- "metadata": {},
337
- "output_type": "display_data"
338
- },
339
- {
340
- "data": {
341
- "text/markdown": [
342
- "--------------"
343
- ],
344
- "text/plain": [
345
- "<IPython.core.display.Markdown object>"
346
- ]
347
- },
348
- "metadata": {},
349
- "output_type": "display_data"
350
- },
351
- {
352
- "data": {
353
- "text/markdown": [
354
- "**Human:** <span style=\"color: blue\">echo -e \"x=lambda y:y*5+3;print('Result:' + str(x(6)))\" > run.py && python3 run.py</span>"
355
- ],
356
- "text/plain": [
357
- "<IPython.core.display.Markdown object>"
358
- ]
359
- },
360
- "metadata": {},
361
- "output_type": "display_data"
362
- },
363
- {
364
- "data": {
365
- "text/markdown": [
366
- "**Assistant:** \n",
367
- "\n",
368
- "```\n",
369
- "$ echo -e \"x=lambda y:y*5+3;print('Result:' + str(x(6)))\" > run.py\n",
370
- "$ python3 run.py\n",
371
- "Result: 33\n",
372
- "```"
373
- ],
374
- "text/plain": [
375
- "<IPython.core.display.Markdown object>"
376
- ]
377
- },
378
- "metadata": {},
379
- "output_type": "display_data"
380
- },
381
- {
382
- "data": {
383
- "text/markdown": [
384
- "--------------"
385
- ],
386
- "text/plain": [
387
- "<IPython.core.display.Markdown object>"
388
- ]
389
- },
390
- "metadata": {},
391
- "output_type": "display_data"
392
- },
393
- {
394
- "data": {
395
- "text/markdown": [
396
- "**Human:** <span style=\"color: blue\">echo -e \"print(list(filter(lambda x: all(x%d for d in range(2,x)),range(2,3**10)))[:10])\" > run.py && python3 run.py</span>"
397
- ],
398
- "text/plain": [
399
- "<IPython.core.display.Markdown object>"
400
- ]
401
- },
402
- "metadata": {},
403
- "output_type": "display_data"
404
- },
405
- {
406
- "data": {
407
- "text/markdown": [
408
- "**Assistant:** \n",
409
- "\n",
410
- "```\n",
411
- "$ echo -e \"print(list(filter(lambda x: all(x%d for d in range(2,x)),range(2,3**10)))[:10])\" > run.py\n",
412
- "$ python3 run.py\n",
413
- "[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]\n",
414
- "```"
415
- ],
416
- "text/plain": [
417
- "<IPython.core.display.Markdown object>"
418
- ]
419
- },
420
- "metadata": {},
421
- "output_type": "display_data"
422
- },
423
- {
424
- "data": {
425
- "text/markdown": [
426
- "--------------"
427
- ],
428
- "text/plain": [
429
- "<IPython.core.display.Markdown object>"
430
- ]
431
- },
432
- "metadata": {},
433
- "output_type": "display_data"
434
- },
435
- {
436
- "data": {
437
- "text/markdown": [
438
- "**Human:** <span style=\"color: blue\">echo -e \"echo 'Hello from Docker\" > entrypoint.sh && echo -e \"FROM ubuntu:20.04\n",
439
- "COPY entrypoint.sh entrypoint.sh\n",
440
- "ENTRYPOINT [\"/bin/sh\",\"entrypoint.sh\"]\">Dockerfile && docker build . -t my_docker_image && docker run -t my_docker_image</span>"
441
- ],
442
- "text/plain": [
443
- "<IPython.core.display.Markdown object>"
444
- ]
445
- },
446
- "metadata": {},
447
- "output_type": "display_data"
448
- },
449
- {
450
- "data": {
451
- "text/markdown": [
452
- "**Assistant:** \n",
453
- "\n",
454
- "```\n",
455
- "$ echo -e \"echo 'Hello from Docker\" > entrypoint.sh\n",
456
- "$ echo -e \"FROM ubuntu:20.04\n",
457
- "COPY entrypoint.sh entrypoint.sh\n",
458
- "ENTRYPOINT [\"/bin/sh\",\"entrypoint.sh\"]\">Dockerfile\n",
459
- "$ docker build . -t my_docker_image\n",
460
- "$ docker run -t my_docker_image\n",
461
- "Hello from Docker\n",
462
- "```"
463
- ],
464
- "text/plain": [
465
- "<IPython.core.display.Markdown object>"
466
- ]
467
- },
468
- "metadata": {},
469
- "output_type": "display_data"
470
- },
471
- {
472
- "data": {
473
- "text/markdown": [
474
- "--------------"
475
- ],
476
- "text/plain": [
477
- "<IPython.core.display.Markdown object>"
478
- ]
479
- },
480
- "metadata": {},
481
- "output_type": "display_data"
482
- },
483
- {
484
- "data": {
485
- "text/markdown": [
486
- "**Human:** <span style=\"color: blue\">nvidia-smi</span>"
487
- ],
488
- "text/plain": [
489
- "<IPython.core.display.Markdown object>"
490
- ]
491
- },
492
- "metadata": {},
493
- "output_type": "display_data"
494
- },
495
- {
496
- "data": {
497
- "text/markdown": [
498
- "**Assistant:** \n",
499
- "\n",
500
- "```\n",
501
- "$ nvidia-smi\n",
502
- "Sat May 15 21:45:02 2021 \n",
503
- "+-----------------------------------------------------------------------------+\n",
504
- "| NVIDIA-SMI 460.32.03 Driver Version: 460.32.03 CUDA Version: 11.2 |\n",
505
- "|-------------------------------+----------------------+----------------------+\n",
506
- "| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |\n",
507
- "| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |\n",
508
- "|===============================+======================+======================|\n",
509
- "| 0 GeForce RTX 208... Off | 00000000:01:00.0 Off | N/A |\n",
510
- "| N/A 45C P0 28W / N/A | 590MiB / 7979MiB | 0% Default |\n",
511
- "+-------------------------------+----------------------+----------------------+\n",
512
- " \n",
513
- "+-----------------------------------------------------------------------------+\n",
514
- "| Processes: GPU Memory |\n",
515
- "| GPU PID Type Process name Usage |\n",
516
- "|=============================================================================|\n",
517
- "|"
518
- ],
519
- "text/plain": [
520
- "<IPython.core.display.Markdown object>"
521
- ]
522
- },
523
- "metadata": {},
524
- "output_type": "display_data"
525
- },
526
- {
527
- "data": {
528
- "text/markdown": [
529
- "--------------"
530
- ],
531
- "text/plain": [
532
- "<IPython.core.display.Markdown object>"
533
- ]
534
- },
535
- "metadata": {},
536
- "output_type": "display_data"
537
- }
538
- ],
539
- "source": [
540
- "with minichain.start_chain(\"chatgpt\") as backend:\n",
541
- " prompt = ChatPrompt(backend.OpenAI())\n",
542
- " state = State([])\n",
543
- " for t in fake_human:\n",
544
- " state.human_input = t\n",
545
- " display(Markdown(f'**Human:** <span style=\"color: blue\">{t}</span>'))\n",
546
- " state = prompt(state)\n",
547
- " display(Markdown(f'**Assistant:** {state.memory[-1][1]}'))\n",
548
- " display(Markdown(f'--------------'))"
549
- ]
550
- },
551
- {
552
- "cell_type": "code",
553
- "execution_count": 8,
554
- "id": "49506eaa",
555
- "metadata": {
556
- "execution": {
557
- "iopub.execute_input": "2023-02-27T16:23:39.944473Z",
558
- "iopub.status.busy": "2023-02-27T16:23:39.943436Z",
559
- "iopub.status.idle": "2023-02-27T16:23:40.011091Z",
560
- "shell.execute_reply": "2023-02-27T16:23:40.010474Z"
561
- },
562
- "tags": [
563
- "hide_inp"
564
- ]
565
- },
566
- "outputs": [
567
- {
568
- "data": {
569
- "text/html": [
570
- "\n",
571
- "<!-- <link rel=\"stylesheet\" href=\"https://cdn.rawgit.com/Chalarangelo/mini.css/v3.0.1/dist/mini-default.min.css\"> -->\n",
572
- " <main class=\"container\">\n",
573
- "\n",
574
- "<h3>ChatPrompt</h3>\n",
575
- "\n",
576
- "<dl>\n",
577
- " <dt>Input:</dt>\n",
578
- " <dd>\n",
579
- "<div class=\"highlight\"><pre><span></span><span class=\"n\">State</span><span class=\"p\">(</span><span class=\"n\">memory</span><span class=\"o\">=</span><span class=\"p\">[(</span><span class=\"s1\">&#39;human 1&#39;</span><span class=\"p\">,</span> <span class=\"s1\">&#39;output 1&#39;</span><span class=\"p\">),</span> <span class=\"p\">(</span><span class=\"s1\">&#39;human 2&#39;</span><span class=\"p\">,</span> <span class=\"s1\">&#39;output 2&#39;</span><span class=\"p\">)],</span> <span class=\"n\">human_input</span><span class=\"o\">=</span><span class=\"s1\">&#39;cd ~&#39;</span><span class=\"p\">)</span>\n",
580
- "</pre></div>\n",
581
- "\n",
582
- "\n",
583
- " </dd>\n",
584
- "\n",
585
- " <dt> Full Prompt: </dt>\n",
586
- " <dd>\n",
587
- " <details>\n",
588
- " <summary>Prompt</summary>\n",
589
- " <p>Assistant is a large language model trained by OpenAI.<br><br>Assistant is designed to be able to assist with a wide range of tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. As a language model, Assistant is able to generate human-like text based on the input it receives, allowing it to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand.<br><br>Assistant is constantly learning and improving, and its capabilities are constantly evolving. It is able to process and understand large amounts of text, and can use this knowledge to provide accurate and informative responses to a wide range of questions. Additionally, Assistant is able to generate its own text based on the input it receives, allowing it to engage in discussions and provide explanations and descriptions on a wide range of topics.<br><br>Overall, Assistant is a powerful tool that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. Whether you need help with a specific question or just want to have a conversation about a particular topic, Assistant is here to assist.<br><br><br>Human: human 1<br>AI: output 1<br><br>Human: human 2<br>AI: output 2<br><br><br>Human: <div style='color:red'>cd ~</div><br>Assistant:</p>\n",
590
- " </details>\n",
591
- " </dd>\n",
592
- "\n",
593
- " <dt> Response: </dt>\n",
594
- " <dd>\n",
595
- " Text Assistant: Hello\n",
596
- " </dd>\n",
597
- "\n",
598
- " <dt>Value:</dt>\n",
599
- " <dd>\n",
600
- "<div class=\"highlight\"><pre><span></span><span class=\"n\">State</span><span class=\"p\">(</span><span class=\"n\">memory</span><span class=\"o\">=</span><span class=\"p\">[(</span><span class=\"s1\">&#39;human 2&#39;</span><span class=\"p\">,</span> <span class=\"s1\">&#39;output 2&#39;</span><span class=\"p\">),</span> <span class=\"p\">(</span><span class=\"s1\">&#39;cd ~&#39;</span><span class=\"p\">,</span> <span class=\"s1\">&#39; Hello&#39;</span><span class=\"p\">)],</span> <span class=\"n\">human_input</span><span class=\"o\">=</span><span class=\"s1\">&#39;&#39;</span><span class=\"p\">)</span>\n",
601
- "</pre></div>\n",
602
- "\n",
603
- " </dd>\n",
604
- "</main>\n"
605
- ],
606
- "text/plain": [
607
- "HTML(html='\\n<!-- <link rel=\"stylesheet\" href=\"https://cdn.rawgit.com/Chalarangelo/mini.css/v3.0.1/dist/mini-default.min.css\"> -->\\n <main class=\"container\">\\n\\n<h3>ChatPrompt</h3>\\n\\n<dl>\\n <dt>Input:</dt>\\n <dd>\\n<div class=\"highlight\"><pre><span></span><span class=\"n\">State</span><span class=\"p\">(</span><span class=\"n\">memory</span><span class=\"o\">=</span><span class=\"p\">[(</span><span class=\"s1\">&#39;human 1&#39;</span><span class=\"p\">,</span> <span class=\"s1\">&#39;output 1&#39;</span><span class=\"p\">),</span> <span class=\"p\">(</span><span class=\"s1\">&#39;human 2&#39;</span><span class=\"p\">,</span> <span class=\"s1\">&#39;output 2&#39;</span><span class=\"p\">)],</span> <span class=\"n\">human_input</span><span class=\"o\">=</span><span class=\"s1\">&#39;cd ~&#39;</span><span class=\"p\">)</span>\\n</pre></div>\\n\\n\\n </dd>\\n\\n <dt> Full Prompt: </dt>\\n <dd>\\n <details>\\n <summary>Prompt</summary>\\n <p>Assistant is a large language model trained by OpenAI.<br><br>Assistant is designed to be able to assist with a wide range of tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. As a language model, Assistant is able to generate human-like text based on the input it receives, allowing it to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand.<br><br>Assistant is constantly learning and improving, and its capabilities are constantly evolving. It is able to process and understand large amounts of text, and can use this knowledge to provide accurate and informative responses to a wide range of questions. Additionally, Assistant is able to generate its own text based on the input it receives, allowing it to engage in discussions and provide explanations and descriptions on a wide range of topics.<br><br>Overall, Assistant is a powerful tool that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. Whether you need help with a specific question or just want to have a conversation about a particular topic, Assistant is here to assist.<br><br><br>Human: human 1<br>AI: output 1<br><br>Human: human 2<br>AI: output 2<br><br><br>Human: <div style=\\'color:red\\'>cd ~</div><br>Assistant:</p>\\n </details>\\n </dd>\\n\\n <dt> Response: </dt>\\n <dd>\\n Text Assistant: Hello\\n </dd>\\n\\n <dt>Value:</dt>\\n <dd>\\n<div class=\"highlight\"><pre><span></span><span class=\"n\">State</span><span class=\"p\">(</span><span class=\"n\">memory</span><span class=\"o\">=</span><span class=\"p\">[(</span><span class=\"s1\">&#39;human 2&#39;</span><span class=\"p\">,</span> <span class=\"s1\">&#39;output 2&#39;</span><span class=\"p\">),</span> <span class=\"p\">(</span><span class=\"s1\">&#39;cd ~&#39;</span><span class=\"p\">,</span> <span class=\"s1\">&#39; Hello&#39;</span><span class=\"p\">)],</span> <span class=\"n\">human_input</span><span class=\"o\">=</span><span class=\"s1\">&#39;&#39;</span><span class=\"p\">)</span>\\n</pre></div>\\n\\n </dd>\\n</main>\\n')"
608
- ]
609
- },
610
- "execution_count": 8,
611
- "metadata": {},
612
- "output_type": "execute_result"
613
- }
614
- ],
615
- "source": [
616
- "ChatPrompt().show(State([(\"human 1\", \"output 1\"), (\"human 2\", \"output 2\") ], \"cd ~\"),\n",
617
- " \"Text Assistant: Hello\")"
618
- ]
619
- },
620
- {
621
- "cell_type": "markdown",
622
- "id": "8c8c967b",
623
- "metadata": {},
624
- "source": [
625
- "View the run log."
626
- ]
627
- },
628
- {
629
- "cell_type": "code",
630
- "execution_count": 9,
631
- "id": "7884cf9d",
632
- "metadata": {
633
- "execution": {
634
- "iopub.execute_input": "2023-02-27T16:23:40.013468Z",
635
- "iopub.status.busy": "2023-02-27T16:23:40.013285Z",
636
- "iopub.status.idle": "2023-02-27T16:23:40.076730Z",
637
- "shell.execute_reply": "2023-02-27T16:23:40.076097Z"
638
- }
639
- },
640
- "outputs": [
641
- {
642
- "name": "stderr",
643
- "output_type": "stream",
644
- "text": [
645
- "\u001b[38;5;15mbe24331e-675b-4c1f-aa66-65b84a7602e3\u001b[1m\u001b[0m\n",
646
- "└── \u001b[38;5;5mchatgpt\u001b[0m/1\u001b[0m ⇒ \u001b[38;5;2mstarted\u001b[0m \u001b[38;5;15m2023-02-27 16:23:05Z\u001b[2m\u001b[0m ⧖ \u001b[38;5;4m33.953s\u001b[2m\u001b[0m\n",
647
- " └── \u001b[38;5;5mchatgpt\u001b[0m/2\u001b[0m ⇒ \u001b[38;5;2msucceeded\u001b[0m \u001b[38;5;15m2023-02-27 16:23:39Z\u001b[2m\u001b[0m\n",
648
- "\n",
649
- "\u001b[38;5;15m60ca1813-07db-499b-b10b-d5b64709303f\u001b[1m\u001b[0m\n",
650
- "└── \u001b[38;5;5m<class '__main__.ChatPrompt'>\u001b[0m/1\u001b[0m ⇒ \u001b[38;5;2mstarted\u001b[0m \u001b[38;5;15m2023-02-27 16:23:15Z\u001b[2m\u001b[0m ⧖ \u001b[38;5;4m3.264s\u001b[2m\u001b[0m\n",
651
- " ├── <unnamed>\n",
652
- " │ └── \u001b[38;5;5mInput Function\u001b[0m/2/2\u001b[0m ⇒ \u001b[38;5;2msucceeded\u001b[0m \u001b[38;5;15m2023-02-27 16:23:15Z\u001b[2m\u001b[0m\n",
653
- " ├── \u001b[38;5;5meliot:destination_failure\u001b[0m/3\u001b[0m \u001b[38;5;15m2023-02-27 16:23:15Z\u001b[2m\u001b[0m\n",
654
- " │ ���── \u001b[38;5;4mexception\u001b[0m: builtins.AttributeError\u001b[0m\n",
655
- " │ ├── \u001b[38;5;4mmessage\u001b[0m: {\"'input'\": 'State(memory=[(\\'cd ~\\', \\' \\\\n```\\\\n$ cd ~\\\\n$ pwd\\\\n/home/username\\\\n```\\'), (\\'{Please make a file jokes.txt inside and put some jokes inside}\\', \\'\\\\n\\\\n```\\\\n$ touch jokes.txt\\\\n$ echo \"Why did the chicken cross the road? To get to the other side!\" >> jokes.txt\\\\n$ echo \"What did the fish say when it hit the wall? Dam!\" >> jokes.txt\\\\n$ echo \"Why did the scarecrow win the Nobel Prize? Because he was outstanding in his field!\" >> jokes.txt\\\\n```\\')], human_input=\\'echo -e \"x=lambda y:y*5+3;print(\\\\\\'Result:\\\\\\' + str(x(6)))\" > run.py && python3 run.py\\')', \"'action_status'\": \"'started'\", \"'timestamp'\": '1677514995.8653514', \"'task_uuid'\": \"'60ca1813-07db-499b-b10b-d5b64709303f'\", \"'action_type'\": \"'Input Function'\", \"'task_level'\": '[2, 1]'}\u001b[0m\n",
656
- " │ └── \u001b[38;5;4mreason\u001b[0m: module 'numpy' has no attribute 'bool'.⏎\n",
657
- " │ `np.bool` was a deprecated alias for the builtin `bool`. To avoid this error in existing code, use `bool` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.bool_` here.⏎\n",
658
- " │ The aliases was originally deprecated in NumPy 1.20; for more details and guidance see the original release note at:⏎\n",
659
- " │ https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations\u001b[0m\n",
660
- " ├── \u001b[38;5;5mPrompted\u001b[0m/4/1\u001b[0m ⇒ \u001b[38;5;2mstarted\u001b[0m \u001b[38;5;15m2023-02-27 16:23:15Z\u001b[2m\u001b[0m ⧖ \u001b[38;5;4m3.259s\u001b[2m\u001b[0m\n",
661
- " │ ├── \u001b[38;5;4mprompt\u001b[0m: Assistant is a large language model trained by OpenAI.⏎\n",
662
- " │ │ ⏎\n",
663
- " │ │ Assistant is designed to be able to assist with a wide range of tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. As a language model, Assistant is able to generate human-like text based on the input it receives, allowing it to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand.⏎\n",
664
- " │ │ ⏎\n",
665
- " │ │ Assistant is constantly learning and improving, and its capabilities are constantly evolving. It is able to process and understand large amounts of text, and can use this knowledge to provide accurate and informative responses to a wide range of questions. Additionally, Assistant is able to generate its own text based on the input it receives, allowing it to engage in discussions and provide explanations and descriptions on a wide range of topics.⏎\n",
666
- " │ │ ⏎\n",
667
- " │ │ Overall, Assistant is a powerful tool that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. Whether you need help with a specific question or just want to have a conversation about a particular topic, Assistant is here to assist.⏎\n",
668
- " │ │ ⏎\n",
669
- " │ │ ⏎\n",
670
- " │ │ Human: cd ~⏎\n",
671
- " │ │ AI: ⏎\n",
672
- " │ │ ```⏎\n",
673
- " │ │ $ cd ~⏎\n",
674
- " │ │ $ pwd⏎\n",
675
- " │ │ /home/username⏎\n",
676
- " │ │ ```⏎\n",
677
- " │ │ ⏎\n",
678
- " │ │ Human: {Please make a file jokes.txt inside and put some jokes inside}⏎\n",
679
- " │ │ AI: ⏎\n",
680
- " │ │ ⏎\n",
681
- " │ │ ```⏎\n",
682
- " │ │ $ touch jokes.txt⏎\n",
683
- " │ │ $ echo \"Why did the chicken cross the road? To get to the other side!\" >> jokes.txt⏎\n",
684
- " │ │ $ echo \"What did the fish say when it hit the wall? Dam!\" >> jokes.txt⏎\n",
685
- " │ │ $ echo \"Why did the scarecrow win the Nobel Prize? Because he was outstanding in his field!\" >> jokes.txt⏎\n",
686
- " │ │ ```⏎\n",
687
- " │ │ ⏎\n",
688
- " │ │ ⏎\n",
689
- " │ │ Human: echo -e \"x=lambda y:y*5+3;print('Result:' + str(x(6)))\" > run.py && python3 run.py⏎\n",
690
- " │ │ Assistant:\u001b[0m\n",
691
- " │ └── \u001b[38;5;5mPrompted\u001b[0m/4/2\u001b[0m ⇒ \u001b[38;5;2msucceeded\u001b[0m \u001b[38;5;15m2023-02-27 16:23:19Z\u001b[2m\u001b[0m\n",
692
- " ├── \u001b[38;5;5mResult\u001b[0m/5/1\u001b[0m ⇒ \u001b[38;5;2mstarted\u001b[0m \u001b[38;5;15m2023-02-27 16:23:19Z\u001b[2m\u001b[0m ⧖ \u001b[38;5;4m0.000s\u001b[2m\u001b[0m\n",
693
- " │ ├── \u001b[38;5;4mresult\u001b[0m: ⏎\n",
694
- " │ │ ⏎\n",
695
- " │ │ ```⏎\n",
696
- " │ │ $ echo -e \"x=lambda y:y*5+3;print('Result:' + str(x(6)))\" > run.py⏎\n",
697
- " │ │ $ python3 run.py⏎\n",
698
- " │ │ Result: 33⏎\n",
699
- " │ │ ```\u001b[0m\n",
700
- " │ └── \u001b[38;5;5mResult\u001b[0m/5/2\u001b[0m ⇒ \u001b[38;5;2msucceeded\u001b[0m \u001b[38;5;15m2023-02-27 16:23:19Z\u001b[2m\u001b[0m\n",
701
- " └── \u001b[38;5;5m<class '__main__.ChatPrompt'>\u001b[0m/6\u001b[0m ⇒ \u001b[38;5;2msucceeded\u001b[0m \u001b[38;5;15m2023-02-27 16:23:19Z\u001b[2m\u001b[0m\n",
702
- "\n",
703
- "\u001b[38;5;15mc2062d1e-37fb-44e9-9e3f-35fd33720af5\u001b[1m\u001b[0m\n",
704
- "└── \u001b[38;5;5m<class '__main__.ChatPrompt'>\u001b[0m/1\u001b[0m ⇒ \u001b[38;5;2mstarted\u001b[0m \u001b[38;5;15m2023-02-27 16:23:06Z\u001b[2m\u001b[0m ⧖ \u001b[38;5;4m1.477s\u001b[2m\u001b[0m\n",
705
- " ├── <unnamed>\n",
706
- " │ └── \u001b[38;5;5mInput Function\u001b[0m/2/2\u001b[0m ⇒ \u001b[38;5;2msucceeded\u001b[0m \u001b[38;5;15m2023-02-27 16:23:06Z\u001b[2m\u001b[0m\n",
707
- " ├── \u001b[38;5;5meliot:destination_failure\u001b[0m/3\u001b[0m \u001b[38;5;15m2023-02-27 16:23:06Z\u001b[2m\u001b[0m\n",
708
- " │ ├── \u001b[38;5;4mexception\u001b[0m: builtins.AttributeError\u001b[0m\n",
709
- " │ ├── \u001b[38;5;4mmessage\u001b[0m: {\"'input'\": \"State(memory=[], human_input='I want you to act as a Linux terminal. I will type commands and you will reply with what the terminal should show. I want you to only reply with the terminal output inside one unique code block, and nothing else. Do not write explanations. Do not type commands unless I instruct you to do so. When I need to tell you something in English I will do so by putting text inside curly brackets {like this}. My first command is pwd.')\", \"'action_status'\": \"'started'\", \"'timestamp'\": '1677514986.2875783', \"'task_uuid'\": \"'c2062d1e-37fb-44e9-9e3f-35fd33720af5'\", \"'action_type'\": \"'Input Function'\", \"'task_level'\": '[2, 1]'}\u001b[0m\n",
710
- " │ └── \u001b[38;5;4mreason\u001b[0m: module 'numpy' has no attribute 'bool'.⏎\n",
711
- " │ `np.bool` was a deprecated alias for the builtin `bool`. To avoid this error in existing code, use `bool` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.bool_` here.⏎\n",
712
- " │ The aliases was originally deprecated in NumPy 1.20; for more details and guidance see the original release note at:⏎\n",
713
- " │ https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations\u001b[0m\n",
714
- " ├── \u001b[38;5;5mPrompted\u001b[0m/4/1\u001b[0m ⇒ \u001b[38;5;2mstarted\u001b[0m \u001b[38;5;15m2023-02-27 16:23:06Z\u001b[2m\u001b[0m ⧖ \u001b[38;5;4m1.472s\u001b[2m\u001b[0m\n",
715
- " │ ├── \u001b[38;5;4mprompt\u001b[0m: Assistant is a large language model trained by OpenAI.⏎\n",
716
- " │ │ ⏎\n",
717
- " │ │ Assistant is designed to be able to assist with a wide range of tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. As a language model, Assistant is able to generate human-like text based on the input it receives, allowing it to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand.⏎\n",
718
- " │ │ ⏎\n",
719
- " │ │ Assistant is constantly learning and improving, and its capabilities are constantly evolving. It is able to process and understand large amounts of text, and can use this knowledge to provide accurate and informative responses to a wide range of questions. Additionally, Assistant is able to generate its own text based on the input it receives, allowing it to engage in discussions and provide explanations and descriptions on a wide range of topics.⏎\n",
720
- " │ │ ⏎\n",
721
- " │ │ Overall, Assistant is a powerful tool that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. Whether you need help with a specific question or just want to have a conversation about a particular topic, Assistant is here to assist.⏎\n",
722
- " │ │ ⏎\n",
723
- " │ │ ⏎\n",
724
- " │ │ ⏎\n",
725
- " │ │ Human: I want you to act as a Linux terminal. I will type commands and you will reply with what the terminal should show. I want you to only reply with the terminal output inside one unique code block, and nothing else. Do not write explanations. Do not type commands unless I instruct you to do so. When I need to tell you something in English I will do so by putting text inside curly brackets {like this}. My first command is pwd.⏎\n",
726
- " │ │ Assistant:\u001b[0m\n",
727
- " │ └── \u001b[38;5;5mPrompted\u001b[0m/4/2\u001b[0m ⇒ \u001b[38;5;2msucceeded\u001b[0m \u001b[38;5;15m2023-02-27 16:23:07Z\u001b[2m\u001b[0m\n",
728
- " ├── \u001b[38;5;5mResult\u001b[0m/5/1\u001b[0m ⇒ \u001b[38;5;2mstarted\u001b[0m \u001b[38;5;15m2023-02-27 16:23:07Z\u001b[2m\u001b[0m ⧖ \u001b[38;5;4m0.000s\u001b[2m\u001b[0m\n",
729
- " │ ├── \u001b[38;5;4mresult\u001b[0m: ⏎\n",
730
- " │ │ ```⏎\n",
731
- " │ │ $ pwd⏎\n",
732
- " │ │ /⏎\n",
733
- " │ │ ```\u001b[0m\n",
734
- " │ └── \u001b[38;5;5mResult\u001b[0m/5/2\u001b[0m ⇒ \u001b[38;5;2msucceeded\u001b[0m \u001b[38;5;15m2023-02-27 16:23:07Z\u001b[2m\u001b[0m\n",
735
- " └── \u001b[38;5;5m<class '__main__.ChatPrompt'>\u001b[0m/6\u001b[0m ⇒ \u001b[38;5;2msucceeded\u001b[0m \u001b[38;5;15m2023-02-27 16:23:07Z\u001b[2m\u001b[0m\n",
736
- "\n",
737
- "\u001b[38;5;15mea339a52-82af-4c19-8ee6-1d2f081bc437\u001b[1m\u001b[0m\n",
738
- "└── \u001b[38;5;5m<class '__main__.ChatPrompt'>\u001b[0m/1\u001b[0m ⇒ \u001b[38;5;2mstarted\u001b[0m \u001b[38;5;15m2023-02-27 16:23:28Z\u001b[2m\u001b[0m ⧖ \u001b[38;5;4m11.867s\u001b[2m\u001b[0m\n",
739
- " ├── <unnamed>\n",
740
- " │ └── \u001b[38;5;5mInput Function\u001b[0m/2/2\u001b[0m ⇒ \u001b[38;5;2msucceeded\u001b[0m \u001b[38;5;15m2023-02-27 16:23:28Z\u001b[2m\u001b[0m\n",
741
- " ├── \u001b[38;5;5meliot:destination_failure\u001b[0m/3\u001b[0m \u001b[38;5;15m2023-02-27 16:23:28Z\u001b[2m\u001b[0m\n",
742
- " │ ├── \u001b[38;5;4mexception\u001b[0m: builtins.AttributeError\u001b[0m\n",
743
- " │ ├── \u001b[38;5;4mmessage\u001b[0m: {\"'input'\": 'State(memory=[(\\'echo -e \"print(list(filter(lambda x: all(x%d for d in range(2,x)),range(2,3**10)))[:10])\" > run.py && python3 run.py\\', \\'\\\\n\\\\n```\\\\n$ echo -e \"print(list(filter(lambda x: all(x%d for d in range(2,x)),range(2,3**10)))[:10])\" > run.py\\\\n$ python3 run.py\\\\n[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]\\\\n```\\'), (\\'echo -e \"echo \\\\\\'Hello from Docker\" > entrypoint.sh && echo -e \"FROM ubuntu:20.04\\\\nCOPY entrypoint.sh entrypoint.sh\\\\nENTRYPOINT [\"/bin/sh\",\"entrypoint.sh\"]\">Dockerfile && docker build . -t my_docker_image && docker run -t my_docker_image\\', \\'\\\\n\\\\n```\\\\n$ echo -e \"echo \\\\\\'Hello from Docker\" > entrypoint.sh\\\\n$ echo -e \"FROM ubuntu:20.04\\\\nCOPY entrypoint.sh entrypoint.sh\\\\nENTRYPOINT [\"/bin/sh\",\"entrypoint.sh\"]\">Dockerfile\\\\n$ docker build . -t my_docker_image\\\\n$ docker run -t my_docker_image\\\\nHello from Docker\\\\n```\\')], human_input=\\'nvidia-smi\\')', \"'action_status'\": \"'started'\", \"'timestamp'\": '1677515008.0539572', \"'task_uuid'\": \"'ea339a52-82af-4c19-8ee6-1d2f081bc437'\", \"'action_type'\": \"'Input Function'\", \"'task_level'\": '[2, 1]'}\u001b[0m\n",
744
- " │ └── \u001b[38;5;4mreason\u001b[0m: module 'numpy' has no attribute 'bool'.⏎\n",
745
- " │ `np.bool` was a deprecated alias for the builtin `bool`. To avoid this error in existing code, use `bool` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.bool_` here.⏎\n",
746
- " │ The aliases was originally deprecated in NumPy 1.20; for more details and guidance see the original release note at:⏎\n",
747
- " │ https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations\u001b[0m\n",
748
- " ├── \u001b[38;5;5mPrompted\u001b[0m/4/1\u001b[0m ⇒ \u001b[38;5;2mstarted\u001b[0m \u001b[38;5;15m2023-02-27 16:23:28Z\u001b[2m\u001b[0m ⧖ \u001b[38;5;4m11.858s\u001b[2m\u001b[0m\n",
749
- " │ ├── \u001b[38;5;4mprompt\u001b[0m: Assistant is a large language model trained by OpenAI.⏎\n",
750
- " │ │ ⏎\n",
751
- " │ │ Assistant is designed to be able to assist with a wide range of tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. As a language model, Assistant is able to generate human-like text based on the input it receives, allowing it to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand.⏎\n",
752
- " │ │ ⏎\n",
753
- " │ │ Assistant is constantly learning and improving, and its capabilities are constantly evolving. It is able to process and understand large amounts of text, and can use this knowledge to provide accurate and informative responses to a wide range of questions. Additionally, Assistant is able to generate its own text based on the input it receives, allowing it to engage in discussions and provide explanations and descriptions on a wide range of topics.⏎\n",
754
- " │ │ ⏎\n",
755
- " │ │ Overall, Assistant is a powerful tool that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. Whether you need help with a specific question or just want to have a conversation about a particular topic, Assistant is here to assist.⏎\n",
756
- " │ │ ⏎\n",
757
- " │ │ ⏎\n",
758
- " │ │ Human: echo -e \"print(list(filter(lambda x: all(x%d for d in range(2,x)),range(2,3**10)))[:10])\" > run.py && python3 run.py⏎\n",
759
- " │ │ AI: ⏎\n",
760
- " │ │ ⏎\n",
761
- " │ │ ```⏎\n",
762
- " │ │ $ echo -e \"print(list(filter(lambda x: all(x%d for d in range(2,x)),range(2,3**10)))[:10])\" > run.py⏎\n",
763
- " │ │ $ python3 run.py⏎\n",
764
- " │ │ [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]⏎\n",
765
- " │ │ ```⏎\n",
766
- " │ │ ⏎\n",
767
- " │ │ Human: echo -e \"echo 'Hello from Docker\" > entrypoint.sh && echo -e \"FROM ubuntu:20.04⏎\n",
768
- " │ │ COPY entrypoint.sh entrypoint.sh⏎\n",
769
- " │ │ ENTRYPOINT [\"/bin/sh\",\"entrypoint.sh\"]\">Dockerfile && docker build . -t my_docker_image && docker run -t my_docker_image⏎\n",
770
- " │ │ AI: ⏎\n",
771
- " │ │ ⏎\n",
772
- " │ │ ```⏎\n",
773
- " │ │ $ echo -e \"echo 'Hello from Docker\" > entrypoint.sh⏎\n",
774
- " │ │ $ echo -e \"FROM ubuntu:20.04⏎\n",
775
- " │ │ COPY entrypoint.sh entrypoint.sh⏎\n",
776
- " │ │ ENTRYPOINT [\"/bin/sh\",\"entrypoint.sh\"]\">Dockerfile⏎\n",
777
- " │ │ $ docker build . -t my_docker_image⏎\n",
778
- " │ │ $ docker run -t my_docker_image⏎\n",
779
- " │ │ Hello from Docker⏎\n",
780
- " │ │ ```⏎\n",
781
- " │ │ ⏎\n",
782
- " │ │ ⏎\n",
783
- " │ │ Human: nvidia-smi⏎\n",
784
- " │ │ Assistant:\u001b[0m\n",
785
- " │ └── \u001b[38;5;5mPrompted\u001b[0m/4/2\u001b[0m ⇒ \u001b[38;5;2msucceeded\u001b[0m \u001b[38;5;15m2023-02-27 16:23:39Z\u001b[2m\u001b[0m\n",
786
- " ├── \u001b[38;5;5mResult\u001b[0m/5/1\u001b[0m ⇒ \u001b[38;5;2mstarted\u001b[0m \u001b[38;5;15m2023-02-27 16:23:39Z\u001b[2m\u001b[0m ⧖ \u001b[38;5;4m0.000s\u001b[2m\u001b[0m\n",
787
- " │ ├── \u001b[38;5;4mresult\u001b[0m: ⏎\n",
788
- " │ │ ⏎\n",
789
- " │ │ ```⏎\n",
790
- " │ │ $ nvidia-smi⏎\n",
791
- " │ │ Sat May 15 21:45:02 2021 ⏎\n",
792
- " │ │ +-----------------------------------------------------------------------------+⏎\n",
793
- " │ │ | NVIDIA-SMI 460.32.03 Driver Version: 460.32.03 CUDA Version: 11.2 |⏎\n",
794
- " │ │ |-------------------------------+----------------------+----------------------+⏎\n",
795
- " │ │ | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |⏎\n",
796
- " │ │ | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |⏎\n",
797
- " │ │ |===============================+======================+======================|⏎\n",
798
- " │ │ | 0 GeForce RTX 208... Off | 00000000:01:00.0 Off | N/A |⏎\n",
799
- " │ │ | N/A 45C P0 28W / N/A | 590MiB / 7979MiB | 0% Default |⏎\n",
800
- " │ │ +-------------------------------+----------------------+----------------------+⏎\n",
801
- " │ │ ⏎\n",
802
- " │ │ +-----------------------------------------------------------------------------+⏎\n",
803
- " │ │ | Processes: GPU Memory |⏎\n",
804
- " │ │ | GPU PID Type Process name Usage |⏎\n",
805
- " │ │ |=============================================================================|⏎\n",
806
- " │ │ |\u001b[0m\n",
807
- " │ └── \u001b[38;5;5mResult\u001b[0m/5/2\u001b[0m ⇒ \u001b[38;5;2msucceeded\u001b[0m \u001b[38;5;15m2023-02-27 16:23:39Z\u001b[2m\u001b[0m\n",
808
- " └── \u001b[38;5;5m<class '__main__.ChatPrompt'>\u001b[0m/6\u001b[0m ⇒ \u001b[38;5;2msucceeded\u001b[0m \u001b[38;5;15m2023-02-27 16:23:39Z\u001b[2m\u001b[0m\n",
809
- "\n",
810
- "\u001b[38;5;15m5a8d829e-f545-4f75-b1b3-efb6cdb5d8e4\u001b[1m\u001b[0m\n",
811
- "└── \u001b[38;5;5m<class '__main__.ChatPrompt'>\u001b[0m/1\u001b[0m ⇒ \u001b[38;5;2mstarted\u001b[0m \u001b[38;5;15m2023-02-27 16:23:19Z\u001b[2m\u001b[0m ⧖ \u001b[38;5;4m4.063s\u001b[2m\u001b[0m\n",
812
- " ├── <unnamed>\n",
813
- " │ └── \u001b[38;5;5mInput Function\u001b[0m/2/2\u001b[0m ⇒ \u001b[38;5;2msucceeded\u001b[0m \u001b[38;5;15m2023-02-27 16:23:19Z\u001b[2m\u001b[0m\n",
814
- " ├── \u001b[38;5;5meliot:destination_failure\u001b[0m/3\u001b[0m \u001b[38;5;15m2023-02-27 16:23:19Z\u001b[2m\u001b[0m\n",
815
- " │ ├── \u001b[38;5;4mexception\u001b[0m: builtins.AttributeError\u001b[0m\n",
816
- " │ ├── \u001b[38;5;4mmessage\u001b[0m: {\"'input'\": 'State(memory=[(\\'{Please make a file jokes.txt inside and put some jokes inside}\\', \\'\\\\n\\\\n```\\\\n$ touch jokes.txt\\\\n$ echo \"Why did the chicken cross the road? To get to the other side!\" >> jokes.txt\\\\n$ echo \"What did the fish say when it hit the wall? Dam!\" >> jokes.txt\\\\n$ echo \"Why did the scarecrow win the Nobel Prize? Because he was outstanding in his field!\" >> jokes.txt\\\\n```\\'), (\\'echo -e \"x=lambda y:y*5+3;print(\\\\\\'Result:\\\\\\' + str(x(6)))\" > run.py && python3 run.py\\', \\'\\\\n\\\\n```\\\\n$ echo -e \"x=lambda y:y*5+3;print(\\\\\\'Result:\\\\\\' + str(x(6)))\" > run.py\\\\n$ python3 run.py\\\\nResult: 33\\\\n```\\')], human_input=\\'echo -e \"print(list(filter(lambda x: all(x%d for d in range(2,x)),range(2,3**10)))[:10])\" > run.py && python3 run.py\\')', \"'action_status'\": \"'started'\", \"'timestamp'\": '1677514999.1337094', \"'task_uuid'\": \"'5a8d829e-f545-4f75-b1b3-efb6cdb5d8e4'\", \"'action_type'\": \"'Input Function'\", \"'task_level'\": '[2, 1]'}\u001b[0m\n",
817
- " │ └── \u001b[38;5;4mreason\u001b[0m: module 'numpy' has no attribute 'bool'.⏎\n",
818
- " │ `np.bool` was a deprecated alias for the builtin `bool`. To avoid this error in existing code, use `bool` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.bool_` here.⏎\n",
819
- " │ The aliases was originally deprecated in NumPy 1.20; for more details and guidance see the original release note at:⏎\n",
820
- " │ https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations\u001b[0m\n",
821
- " ├── \u001b[38;5;5mPrompted\u001b[0m/4/1\u001b[0m ⇒ \u001b[38;5;2mstarted\u001b[0m \u001b[38;5;15m2023-02-27 16:23:19Z\u001b[2m\u001b[0m ⧖ \u001b[38;5;4m4.061s\u001b[2m\u001b[0m\n",
822
- " │ ├── \u001b[38;5;4mprompt\u001b[0m: Assistant is a large language model trained by OpenAI.⏎\n",
823
- " │ │ ⏎\n",
824
- " │ │ Assistant is designed to be able to assist with a wide range of tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. As a language model, Assistant is able to generate human-like text based on the input it receives, allowing it to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand.⏎\n",
825
- " │ │ ⏎\n",
826
- " │ │ Assistant is constantly learning and improving, and its capabilities are constantly evolving. It is able to process and understand large amounts of text, and can use this knowledge to provide accurate and informative responses to a wide range of questions. Additionally, Assistant is able to generate its own text based on the input it receives, allowing it to engage in discussions and provide explanations and descriptions on a wide range of topics.⏎\n",
827
- " │ │ ⏎\n",
828
- " │ │ Overall, Assistant is a powerful tool that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. Whether you need help with a specific question or just want to have a conversation about a particular topic, Assistant is here to assist.⏎\n",
829
- " │ │ ⏎\n",
830
- " │ │ ⏎\n",
831
- " │ │ Human: {Please make a file jokes.txt inside and put some jokes inside}⏎\n",
832
- " │ │ AI: ⏎\n",
833
- " │ │ ⏎\n",
834
- " │ │ ```⏎\n",
835
- " │ │ $ touch jokes.txt⏎\n",
836
- " │ │ $ echo \"Why did the chicken cross the road? To get to the other side!\" >> jokes.txt⏎\n",
837
- " │ │ $ echo \"What did the fish say when it hit the wall? Dam!\" >> jokes.txt⏎\n",
838
- " │ │ $ echo \"Why did the scarecrow win the Nobel Prize? Because he was outstanding in his field!\" >> jokes.txt⏎\n",
839
- " │ │ ```⏎\n",
840
- " │ │ ⏎\n",
841
- " │ │ Human: echo -e \"x=lambda y:y*5+3;print('Result:' + str(x(6)))\" > run.py && python3 run.py⏎\n",
842
- " │ │ AI: ⏎\n",
843
- " │ │ ⏎\n",
844
- " │ │ ```⏎\n",
845
- " │ │ $ echo -e \"x=lambda y:y*5+3;print('Result:' + str(x(6)))\" > run.py⏎\n",
846
- " │ │ $ python3 run.py⏎\n",
847
- " │ │ Result: 33⏎\n",
848
- " │ │ ```⏎\n",
849
- " │ │ ⏎\n",
850
- " │ │ ⏎\n",
851
- " │ │ Human: echo -e \"print(list(filter(lambda x: all(x%d for d in range(2,x)),range(2,3**10)))[:10])\" > run.py && python3 run.py⏎\n",
852
- " │ │ Assistant:\u001b[0m\n",
853
- " │ └── \u001b[38;5;5mPrompted\u001b[0m/4/2\u001b[0m ⇒ \u001b[38;5;2msucceeded\u001b[0m \u001b[38;5;15m2023-02-27 16:23:23Z\u001b[2m\u001b[0m\n",
854
- " ├── \u001b[38;5;5mResult\u001b[0m/5/1\u001b[0m ⇒ \u001b[38;5;2mstarted\u001b[0m \u001b[38;5;15m2023-02-27 16:23:23Z\u001b[2m\u001b[0m ⧖ \u001b[38;5;4m0.000s\u001b[2m\u001b[0m\n",
855
- " │ ├── \u001b[38;5;4mresult\u001b[0m: ⏎\n",
856
- " │ │ ⏎\n",
857
- " │ │ ```⏎\n",
858
- " │ │ $ echo -e \"print(list(filter(lambda x: all(x%d for d in range(2,x)),range(2,3**10)))[:10])\" > run.py⏎\n",
859
- " │ │ $ python3 run.py⏎\n",
860
- " │ │ [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]⏎\n",
861
- " │ │ ```\u001b[0m\n",
862
- " │ └── \u001b[38;5;5mResult\u001b[0m/5/2\u001b[0m ⇒ \u001b[38;5;2msucceeded\u001b[0m \u001b[38;5;15m2023-02-27 16:23:23Z\u001b[2m\u001b[0m\n",
863
- " └── \u001b[38;5;5m<class '__main__.ChatPrompt'>\u001b[0m/6\u001b[0m ⇒ \u001b[38;5;2msucceeded\u001b[0m \u001b[38;5;15m2023-02-27 16:23:23Z\u001b[2m\u001b[0m\n",
864
- "\n",
865
- "\u001b[38;5;15m8d9f2eb7-c022-48e6-bdeb-c35b8852c934\u001b[1m\u001b[0m\n",
866
- "└── \u001b[38;5;5m<class '__main__.ChatPrompt'>\u001b[0m/1\u001b[0m ⇒ \u001b[38;5;2mstarted\u001b[0m \u001b[38;5;15m2023-02-27 16:23:09Z\u001b[2m\u001b[0m ⧖ \u001b[38;5;4m1.437s\u001b[2m\u001b[0m\n",
867
- " ├── <unnamed>\n",
868
- " │ └── \u001b[38;5;5mInput Function\u001b[0m/2/2\u001b[0m ⇒ \u001b[38;5;2msucceeded\u001b[0m \u001b[38;5;15m2023-02-27 16:23:09Z\u001b[2m\u001b[0m\n",
869
- " ├── \u001b[38;5;5meliot:destination_failure\u001b[0m/3\u001b[0m \u001b[38;5;15m2023-02-27 16:23:09Z\u001b[2m\u001b[0m\n",
870
- " │ ├── \u001b[38;5;4mexception\u001b[0m: builtins.AttributeError\u001b[0m\n",
871
- " │ ├── \u001b[38;5;4mmessage\u001b[0m: {\"'input'\": \"State(memory=[('I want you to act as a Linux terminal. I will type commands and you will reply with what the terminal should show. I want you to only reply with the terminal output inside one unique code block, and nothing else. Do not write explanations. Do not type commands unless I instruct you to do so. When I need to tell you something in English I will do so by putting text inside curly brackets {like this}. My first command is pwd.', '\\\\n```\\\\n$ pwd\\\\n/\\\\n```'), ('ls ~', '\\\\n```\\\\n$ ls ~\\\\nDesktop/ Documents/ Downloads/ Music/ Pictures/ Public/ Templates/ Videos/\\\\n```')], human_input='cd ~')\", \"'action_status'\": \"'started'\", \"'timestamp'\": '1677514989.5083773', \"'task_uuid'\": \"'8d9f2eb7-c022-48e6-bdeb-c35b8852c934'\", \"'action_type'\": \"'Input Function'\", \"'task_level'\": '[2, 1]'}\u001b[0m\n",
872
- " │ └── \u001b[38;5;4mreason\u001b[0m: module 'numpy' has no attribute 'bool'.⏎\n",
873
- " │ `np.bool` was a deprecated alias for the builtin `bool`. To avoid this error in existing code, use `bool` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.bool_` here.⏎\n",
874
- " │ The aliases was originally deprecated in NumPy 1.20; for more details and guidance see the original release note at:⏎\n",
875
- " │ https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations\u001b[0m\n",
876
- " ├── \u001b[38;5;5mPrompted\u001b[0m/4/1\u001b[0m ⇒ \u001b[38;5;2mstarted\u001b[0m \u001b[38;5;15m2023-02-27 16:23:09Z\u001b[2m\u001b[0m ⧖ \u001b[38;5;4m1.428s\u001b[2m\u001b[0m\n",
877
- " │ ├── \u001b[38;5;4mprompt\u001b[0m: Assistant is a large language model trained by OpenAI.⏎\n",
878
- " │ │ ⏎\n",
879
- " │ │ Assistant is designed to be able to assist with a wide range of tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. As a language model, Assistant is able to generate human-like text based on the input it receives, allowing it to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand.⏎\n",
880
- " │ │ ⏎\n",
881
- " │ │ Assistant is constantly learning and improving, and its capabilities are constantly evolving. It is able to process and understand large amounts of text, and can use this knowledge to provide accurate and informative responses to a wide range of questions. Additionally, Assistant is able to generate its own text based on the input it receives, allowing it to engage in discussions and provide explanations and descriptions on a wide range of topics.⏎\n",
882
- " │ │ ⏎\n",
883
- " │ │ Overall, Assistant is a powerful tool that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. Whether you need help with a specific question or just want to have a conversation about a particular topic, Assistant is here to assist.⏎\n",
884
- " │ │ ⏎\n",
885
- " │ │ ⏎\n",
886
- " │ │ Human: I want you to act as a Linux terminal. I will type commands and you will reply with what the terminal should show. I want you to only reply with the terminal output inside one unique code block, and nothing else. Do not write explanations. Do not type commands unless I instruct you to do so. When I need to tell you something in English I will do so by putting text inside curly brackets {like this}. My first command is pwd.⏎\n",
887
- " │ │ AI: ⏎\n",
888
- " │ │ ```⏎\n",
889
- " │ │ $ pwd⏎\n",
890
- " │ │ /⏎\n",
891
- " │ │ ```⏎\n",
892
- " │ │ ⏎\n",
893
- " │ │ Human: ls ~⏎\n",
894
- " │ │ AI: ⏎\n",
895
- " │ │ ```⏎\n",
896
- " │ │ $ ls ~⏎\n",
897
- " │ │ Desktop/ Documents/ Downloads/ Music/ Pictures/ Public/ Templates/ Videos/⏎\n",
898
- " │ │ ```⏎\n",
899
- " │ │ ⏎\n",
900
- " │ │ ⏎\n",
901
- " │ │ Human: cd ~⏎\n",
902
- " │ │ Assistant:\u001b[0m\n",
903
- " │ └── \u001b[38;5;5mPrompted\u001b[0m/4/2\u001b[0m ⇒ \u001b[38;5;2msucceeded\u001b[0m \u001b[38;5;15m2023-02-27 16:23:10Z\u001b[2m\u001b[0m\n",
904
- " ├── \u001b[38;5;5mResult\u001b[0m/5/1\u001b[0m ⇒ \u001b[38;5;2mstarted\u001b[0m \u001b[38;5;15m2023-02-27 16:23:10Z\u001b[2m\u001b[0m ⧖ \u001b[38;5;4m0.000s\u001b[2m\u001b[0m\n",
905
- " │ ├── \u001b[38;5;4mresult\u001b[0m: ⏎\n",
906
- " │ │ ```⏎\n",
907
- " │ │ $ cd ~⏎\n",
908
- " │ │ $ pwd⏎\n",
909
- " │ │ /home/username⏎\n",
910
- " │ │ ```\u001b[0m\n",
911
- " │ └── \u001b[38;5;5mResult\u001b[0m/5/2\u001b[0m ⇒ \u001b[38;5;2msucceeded\u001b[0m \u001b[38;5;15m2023-02-27 16:23:10Z\u001b[2m\u001b[0m\n",
912
- " └── \u001b[38;5;5m<class '__main__.ChatPrompt'>\u001b[0m/6\u001b[0m ⇒ \u001b[38;5;2msucceeded\u001b[0m \u001b[38;5;15m2023-02-27 16:23:10Z\u001b[2m\u001b[0m\n",
913
- "\n",
914
- "\u001b[38;5;15m6a51f09a-2d2a-4883-a864-3bb66ba6215b\u001b[1m\u001b[0m\n",
915
- "└── \u001b[38;5;5m<class '__main__.ChatPrompt'>\u001b[0m/1\u001b[0m ⇒ \u001b[38;5;2mstarted\u001b[0m \u001b[38;5;15m2023-02-27 16:23:07Z\u001b[2m\u001b[0m ⧖ \u001b[38;5;4m1.718s\u001b[2m\u001b[0m\n",
916
- " ├── <unnamed>\n",
917
- " │ └── \u001b[38;5;5mInput Function\u001b[0m/2/2\u001b[0m ⇒ \u001b[38;5;2msucceeded\u001b[0m \u001b[38;5;15m2023-02-27 16:23:07Z\u001b[2m\u001b[0m\n",
918
- " ├── \u001b[38;5;5meliot:destination_failure\u001b[0m/3\u001b[0m \u001b[38;5;15m2023-02-27 16:23:07Z\u001b[2m\u001b[0m\n",
919
- " │ ├── \u001b[38;5;4mexception\u001b[0m: builtins.AttributeError\u001b[0m\n",
920
- " │ ├── \u001b[38;5;4mmessage\u001b[0m: {\"'input'\": \"State(memory=[('I want you to act as a Linux terminal. I will type commands and you will reply with what the terminal should show. I want you to only reply with the terminal output inside one unique code block, and nothing else. Do not write explanations. Do not type commands unless I instruct you to do so. When I need to tell you something in English I will do so by putting text inside curly brackets {like this}. My first command is pwd.', '\\\\n```\\\\n$ pwd\\\\n/\\\\n```')], human_input='ls ~')\", \"'action_status'\": \"'started'\", \"'timestamp'\": '1677514987.7763977', \"'task_uuid'\": \"'6a51f09a-2d2a-4883-a864-3bb66ba6215b'\", \"'action_type'\": \"'Input Function'\", \"'task_level'\": '[2, 1]'}\u001b[0m\n",
921
- " │ └── \u001b[38;5;4mreason\u001b[0m: module 'numpy' has no attribute 'bool'.⏎\n",
922
- " │ `np.bool` was a deprecated alias for the builtin `bool`. To avoid this error in existing code, use `bool` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.bool_` here.⏎\n",
923
- " │ The aliases was originally deprecated in NumPy 1.20; for more details and guidance see the original release note at:⏎\n",
924
- " │ https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations\u001b[0m\n",
925
- " ├── \u001b[38;5;5mPrompted\u001b[0m/4/1\u001b[0m ⇒ \u001b[38;5;2mstarted\u001b[0m \u001b[38;5;15m2023-02-27 16:23:07Z\u001b[2m\u001b[0m ⧖ \u001b[38;5;4m1.710s\u001b[2m\u001b[0m\n",
926
- " │ ├── \u001b[38;5;4mprompt\u001b[0m: Assistant is a large language model trained by OpenAI.⏎\n",
927
- " │ │ ⏎\n",
928
- " │ │ Assistant is designed to be able to assist with a wide range of tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. As a language model, Assistant is able to generate human-like text based on the input it receives, allowing it to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand.⏎\n",
929
- " │ │ ⏎\n",
930
- " │ │ Assistant is constantly learning and improving, and its capabilities are constantly evolving. It is able to process and understand large amounts of text, and can use this knowledge to provide accurate and informative responses to a wide range of questions. Additionally, Assistant is able to generate its own text based on the input it receives, allowing it to engage in discussions and provide explanations and descriptions on a wide range of topics.⏎\n",
931
- " │ │ ⏎\n",
932
- " │ │ Overall, Assistant is a powerful tool that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. Whether you need help with a specific question or just want to have a conversation about a particular topic, Assistant is here to assist.⏎\n",
933
- " │ │ ⏎\n",
934
- " │ │ ⏎\n",
935
- " │ │ Human: I want you to act as a Linux terminal. I will type commands and you will reply with what the terminal should show. I want you to only reply with the terminal output inside one unique code block, and nothing else. Do not write explanations. Do not type commands unless I instruct you to do so. When I need to tell you something in English I will do so by putting text inside curly brackets {like this}. My first command is pwd.⏎\n",
936
- " │ │ AI: ⏎\n",
937
- " │ │ ```⏎\n",
938
- " │ │ $ pwd⏎\n",
939
- " │ │ /⏎\n",
940
- " │ │ ```⏎\n",
941
- " │ │ ⏎\n",
942
- " │ │ ⏎\n",
943
- " │ │ Human: ls ~⏎\n",
944
- " │ │ Assistant:\u001b[0m\n",
945
- " │ └── \u001b[38;5;5mPrompted\u001b[0m/4/2\u001b[0m ⇒ \u001b[38;5;2msucceeded\u001b[0m \u001b[38;5;15m2023-02-27 16:23:09Z\u001b[2m\u001b[0m\n",
946
- " ├── \u001b[38;5;5mResult\u001b[0m/5/1\u001b[0m ⇒ \u001b[38;5;2mstarted\u001b[0m \u001b[38;5;15m2023-02-27 16:23:09Z\u001b[2m\u001b[0m ⧖ \u001b[38;5;4m0.000s\u001b[2m\u001b[0m\n",
947
- " │ ├── \u001b[38;5;4mresult\u001b[0m: ⏎\n",
948
- " │ │ ```⏎\n",
949
- " │ │ $ ls ~⏎\n",
950
- " │ │ Desktop/ Documents/ Downloads/ Music/ Pictures/ Public/ Templates/ Videos/⏎\n",
951
- " │ │ ```\u001b[0m\n",
952
- " │ └── \u001b[38;5;5mResult\u001b[0m/5/2\u001b[0m ⇒ \u001b[38;5;2msucceeded\u001b[0m \u001b[38;5;15m2023-02-27 16:23:09Z\u001b[2m\u001b[0m\n",
953
- " └── \u001b[38;5;5m<class '__main__.ChatPrompt'>\u001b[0m/6\u001b[0m ⇒ \u001b[38;5;2msucceeded\u001b[0m \u001b[38;5;15m2023-02-27 16:23:09Z\u001b[2m\u001b[0m\n",
954
- "\n",
955
- "\u001b[38;5;15m00a84ff6-6fc1-4afc-88b1-e82a893855d3\u001b[1m\u001b[0m\n",
956
- "└── \u001b[38;5;5m<class '__main__.ChatPrompt'>\u001b[0m/1\u001b[0m ⇒ \u001b[38;5;2mstarted\u001b[0m \u001b[38;5;15m2023-02-27 16:23:23Z\u001b[2m\u001b[0m ⧖ \u001b[38;5;4m4.841s\u001b[2m\u001b[0m\n",
957
- " ├── <unnamed>\n",
958
- " │ └── \u001b[38;5;5mInput Function\u001b[0m/2/2\u001b[0m ⇒ \u001b[38;5;2msucceeded\u001b[0m \u001b[38;5;15m2023-02-27 16:23:23Z\u001b[2m\u001b[0m\n",
959
- " ├── \u001b[38;5;5meliot:destination_failure\u001b[0m/3\u001b[0m \u001b[38;5;15m2023-02-27 16:23:23Z\u001b[2m\u001b[0m\n",
960
- " │ ├── \u001b[38;5;4mexception\u001b[0m: builtins.AttributeError\u001b[0m\n",
961
- " │ ├── \u001b[38;5;4mmessage\u001b[0m: {\"'input'\": 'State(memory=[(\\'echo -e \"x=lambda y:y*5+3;print(\\\\\\'Result:\\\\\\' + str(x(6)))\" > run.py && python3 run.py\\', \\'\\\\n\\\\n```\\\\n$ echo -e \"x=lambda y:y*5+3;print(\\\\\\'Result:\\\\\\' + str(x(6)))\" > run.py\\\\n$ python3 run.py\\\\nResult: 33\\\\n```\\'), (\\'echo -e \"print(list(filter(lambda x: all(x%d for d in range(2,x)),range(2,3**10)))[:10])\" > run.py && python3 run.py\\', \\'\\\\n\\\\n```\\\\n$ echo -e \"print(list(filter(lambda x: all(x%d for d in range(2,x)),range(2,3**10)))[:10])\" > run.py\\\\n$ python3 run.py\\\\n[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]\\\\n```\\')], human_input=\\'echo -e \"echo \\\\\\'Hello from Docker\" > entrypoint.sh && echo -e \"FROM ubuntu:20.04\\\\nCOPY entrypoint.sh entrypoint.sh\\\\nENTRYPOINT [\"/bin/sh\",\"entrypoint.sh\"]\">Dockerfile && docker build . -t my_docker_image && docker run -t my_docker_image\\')', \"'action_status'\": \"'started'\", \"'timestamp'\": '1677515003.1996367', \"'task_uuid'\": \"'00a84ff6-6fc1-4afc-88b1-e82a893855d3'\", \"'action_type'\": \"'Input Function'\", \"'task_level'\": '[2, 1]'}\u001b[0m\n",
962
- " │ └── \u001b[38;5;4mreason\u001b[0m: module 'numpy' has no attribute 'bool'.⏎\n",
963
- " │ `np.bool` was a deprecated alias for the builtin `bool`. To avoid this error in existing code, use `bool` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.bool_` here.⏎\n",
964
- " │ The aliases was originally deprecated in NumPy 1.20; for more details and guidance see the original release note at:⏎\n",
965
- " │ https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations\u001b[0m\n",
966
- " ├── \u001b[38;5;5mPrompted\u001b[0m/4/1\u001b[0m ⇒ \u001b[38;5;2mstarted\u001b[0m \u001b[38;5;15m2023-02-27 16:23:23Z\u001b[2m\u001b[0m ⧖ \u001b[38;5;4m4.838s\u001b[2m\u001b[0m\n",
967
- " │ ├── \u001b[38;5;4mprompt\u001b[0m: Assistant is a large language model trained by OpenAI.⏎\n",
968
- " │ │ ⏎\n",
969
- " │ │ Assistant is designed to be able to assist with a wide range of tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. As a language model, Assistant is able to generate human-like text based on the input it receives, allowing it to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand.⏎\n",
970
- " │ │ ⏎\n",
971
- " │ │ Assistant is constantly learning and improving, and its capabilities are constantly evolving. It is able to process and understand large amounts of text, and can use this knowledge to provide accurate and informative responses to a wide range of questions. Additionally, Assistant is able to generate its own text based on the input it receives, allowing it to engage in discussions and provide explanations and descriptions on a wide range of topics.⏎\n",
972
- " │ │ ⏎\n",
973
- " │ │ Overall, Assistant is a powerful tool that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. Whether you need help with a specific question or just want to have a conversation about a particular topic, Assistant is here to assist.⏎\n",
974
- " │ │ ⏎\n",
975
- " │ │ ⏎\n",
976
- " │ │ Human: echo -e \"x=lambda y:y*5+3;print('Result:' + str(x(6)))\" > run.py && python3 run.py⏎\n",
977
- " │ │ AI: ⏎\n",
978
- " │ │ ⏎\n",
979
- " │ │ ```⏎\n",
980
- " │ │ $ echo -e \"x=lambda y:y*5+3;print('Result:' + str(x(6)))\" > run.py⏎\n",
981
- " │ │ $ python3 run.py⏎\n",
982
- " │ │ Result: 33⏎\n",
983
- " │ │ ```⏎\n",
984
- " │ │ ⏎\n",
985
- " │ │ Human: echo -e \"print(list(filter(lambda x: all(x%d for d in range(2,x)),range(2,3**10)))[:10])\" > run.py && python3 run.py⏎\n",
986
- " │ │ AI: ⏎\n",
987
- " │ │ ⏎\n",
988
- " │ │ ```⏎\n",
989
- " │ │ $ echo -e \"print(list(filter(lambda x: all(x%d for d in range(2,x)),range(2,3**10)))[:10])\" > run.py⏎\n",
990
- " │ │ $ python3 run.py⏎\n",
991
- " │ │ [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]⏎\n",
992
- " │ │ ```⏎\n",
993
- " │ │ ⏎\n",
994
- " │ │ ⏎\n",
995
- " │ │ Human: echo -e \"echo 'Hello from Docker\" > entrypoint.sh && echo -e \"FROM ubuntu:20.04⏎\n",
996
- " │ │ COPY entrypoint.sh entrypoint.sh⏎\n",
997
- " │ │ ENTRYPOINT [\"/bin/sh\",\"entrypoint.sh\"]\">Dockerfile && docker build . -t my_docker_image && docker run -t my_docker_image⏎\n",
998
- " │ │ Assistant:\u001b[0m\n",
999
- " │ └── \u001b[38;5;5mPrompted\u001b[0m/4/2\u001b[0m ⇒ \u001b[38;5;2msucceeded\u001b[0m \u001b[38;5;15m2023-02-27 16:23:28Z\u001b[2m\u001b[0m\n",
1000
- " ├── \u001b[38;5;5mResult\u001b[0m/5/1\u001b[0m ⇒ \u001b[38;5;2mstarted\u001b[0m \u001b[38;5;15m2023-02-27 16:23:28Z\u001b[2m\u001b[0m ⧖ \u001b[38;5;4m0.000s\u001b[2m\u001b[0m\n",
1001
- " │ ├── \u001b[38;5;4mresult\u001b[0m: ⏎\n",
1002
- " │ │ ⏎\n",
1003
- " │ │ ```⏎\n",
1004
- " │ │ $ echo -e \"echo 'Hello from Docker\" > entrypoint.sh⏎\n",
1005
- " │ │ $ echo -e \"FROM ubuntu:20.04⏎\n",
1006
- " │ │ COPY entrypoint.sh entrypoint.sh⏎\n",
1007
- " │ │ ENTRYPOINT [\"/bin/sh\",\"entrypoint.sh\"]\">Dockerfile⏎\n",
1008
- " │ │ $ docker build . -t my_docker_image⏎\n",
1009
- " │ │ $ docker run -t my_docker_image⏎\n",
1010
- " │ │ Hello from Docker⏎\n",
1011
- " │ │ ```\u001b[0m\n",
1012
- " │ └── \u001b[38;5;5mResult\u001b[0m/5/2\u001b[0m ⇒ \u001b[38;5;2msucceeded\u001b[0m \u001b[38;5;15m2023-02-27 16:23:28Z\u001b[2m\u001b[0m\n",
1013
- " └── \u001b[38;5;5m<class '__main__.ChatPrompt'>\u001b[0m/6\u001b[0m ⇒ \u001b[38;5;2msucceeded\u001b[0m \u001b[38;5;15m2023-02-27 16:23:28Z\u001b[2m\u001b[0m\n",
1014
- "\n",
1015
- "\u001b[38;5;15mb0225ad7-9ac0-4735-b895-3fa45eeef9db\u001b[1m\u001b[0m\n",
1016
- "└── \u001b[38;5;5m<class '__main__.ChatPrompt'>\u001b[0m/1\u001b[0m ⇒ \u001b[38;5;2mstarted\u001b[0m \u001b[38;5;15m2023-02-27 16:23:10Z\u001b[2m\u001b[0m ⧖ \u001b[38;5;4m4.909s\u001b[2m\u001b[0m\n",
1017
- " ├── <unnamed>\n",
1018
- " │ └── \u001b[38;5;5mInput Function\u001b[0m/2/2\u001b[0m ⇒ \u001b[38;5;2msucceeded\u001b[0m \u001b[38;5;15m2023-02-27 16:23:10Z\u001b[2m\u001b[0m\n",
1019
- " ├── \u001b[38;5;5meliot:destination_failure\u001b[0m/3\u001b[0m \u001b[38;5;15m2023-02-27 16:23:10Z\u001b[2m\u001b[0m\n",
1020
- " │ ├── \u001b[38;5;4mexception\u001b[0m: builtins.AttributeError\u001b[0m\n",
1021
- " │ ├── \u001b[38;5;4mmessage\u001b[0m: {\"'input'\": \"State(memory=[('ls ~', '\\\\n```\\\\n$ ls ~\\\\nDesktop/ Documents/ Downloads/ Music/ Pictures/ Public/ Templates/ Videos/\\\\n```'), ('cd ~', ' \\\\n```\\\\n$ cd ~\\\\n$ pwd\\\\n/home/username\\\\n```')], human_input='{Please make a file jokes.txt inside and put some jokes inside}')\", \"'action_status'\": \"'started'\", \"'timestamp'\": '1677514990.9499614', \"'task_uuid'\": \"'b0225ad7-9ac0-4735-b895-3fa45eeef9db'\", \"'action_type'\": \"'Input Function'\", \"'task_level'\": '[2, 1]'}\u001b[0m\n",
1022
- " │ └── \u001b[38;5;4mreason\u001b[0m: module 'numpy' has no attribute 'bool'.⏎\n",
1023
- " │ `np.bool` was a deprecated alias for the builtin `bool`. To avoid this error in existing code, use `bool` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.bool_` here.⏎\n",
1024
- " │ The aliases was originally deprecated in NumPy 1.20; for more details and guidance see the original release note at:⏎\n",
1025
- " │ https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations\u001b[0m\n",
1026
- " ├── \u001b[38;5;5mPrompted\u001b[0m/4/1\u001b[0m ⇒ \u001b[38;5;2mstarted\u001b[0m \u001b[38;5;15m2023-02-27 16:23:10Z\u001b[2m\u001b[0m ⧖ \u001b[38;5;4m4.906s\u001b[2m\u001b[0m\n",
1027
- " │ ├── \u001b[38;5;4mprompt\u001b[0m: Assistant is a large language model trained by OpenAI.⏎\n",
1028
- " │ │ ⏎\n",
1029
- " │ │ Assistant is designed to be able to assist with a wide range of tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. As a language model, Assistant is able to generate human-like text based on the input it receives, allowing it to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand.⏎\n",
1030
- " │ │ ⏎\n",
1031
- " │ │ Assistant is constantly learning and improving, and its capabilities are constantly evolving. It is able to process and understand large amounts of text, and can use this knowledge to provide accurate and informative responses to a wide range of questions. Additionally, Assistant is able to generate its own text based on the input it receives, allowing it to engage in discussions and provide explanations and descriptions on a wide range of topics.⏎\n",
1032
- " │ │ ⏎\n",
1033
- " │ │ Overall, Assistant is a powerful tool that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. Whether you need help with a specific question or just want to have a conversation about a particular topic, Assistant is here to assist.⏎\n",
1034
- " │ │ ⏎\n",
1035
- " │ │ ⏎\n",
1036
- " │ │ Human: ls ~⏎\n",
1037
- " │ │ AI: ⏎\n",
1038
- " │ │ ```⏎\n",
1039
- " │ │ $ ls ~⏎\n",
1040
- " │ │ Desktop/ Documents/ Downloads/ Music/ Pictures/ Public/ Templates/ Videos/⏎\n",
1041
- " │ │ ```⏎\n",
1042
- " │ │ ⏎\n",
1043
- " │ │ Human: cd ~⏎\n",
1044
- " │ │ AI: ⏎\n",
1045
- " │ │ ```⏎\n",
1046
- " │ │ $ cd ~⏎\n",
1047
- " │ │ $ pwd⏎\n",
1048
- " │ │ /home/username⏎\n",
1049
- " │ │ ```⏎\n",
1050
- " │ │ ⏎\n",
1051
- " │ │ ⏎\n",
1052
- " │ │ Human: {Please make a file jokes.txt inside and put some jokes inside}⏎\n",
1053
- " │ │ Assistant:\u001b[0m\n",
1054
- " │ └── \u001b[38;5;5mPrompted\u001b[0m/4/2\u001b[0m ⇒ \u001b[38;5;2msucceeded\u001b[0m \u001b[38;5;15m2023-02-27 16:23:15Z\u001b[2m\u001b[0m\n",
1055
- " ├── \u001b[38;5;5mResult\u001b[0m/5/1\u001b[0m ⇒ \u001b[38;5;2mstarted\u001b[0m \u001b[38;5;15m2023-02-27 16:23:15Z\u001b[2m\u001b[0m ⧖ \u001b[38;5;4m0.000s\u001b[2m\u001b[0m\n",
1056
- " │ ├── \u001b[38;5;4mresult\u001b[0m: ⏎\n",
1057
- " │ │ ⏎\n",
1058
- " │ │ ```⏎\n",
1059
- " │ │ $ touch jokes.txt⏎\n",
1060
- " │ │ $ echo \"Why did the chicken cross the road? To get to the other side!\" >> jokes.txt⏎\n",
1061
- " │ │ $ echo \"What did the fish say when it hit the wall? Dam!\" >> jokes.txt⏎\n",
1062
- " │ │ $ echo \"Why did the scarecrow win the Nobel Prize? Because he was outstanding in his field!\" >> jokes.txt⏎\n",
1063
- " │ │ ```\u001b[0m\n",
1064
- " │ └── \u001b[38;5;5mResult\u001b[0m/5/2\u001b[0m ⇒ \u001b[38;5;2msucceeded\u001b[0m \u001b[38;5;15m2023-02-27 16:23:15Z\u001b[2m\u001b[0m\n",
1065
- " └── \u001b[38;5;5m<class '__main__.ChatPrompt'>\u001b[0m/6\u001b[0m ⇒ \u001b[38;5;2msucceeded\u001b[0m \u001b[38;5;15m2023-02-27 16:23:15Z\u001b[2m\u001b[0m\n",
1066
- "\n"
1067
- ]
1068
- }
1069
- ],
1070
- "source": [
1071
- "minichain.show_log(\"chatgpt.log\")"
1072
- ]
1073
- }
1074
- ],
1075
- "metadata": {
1076
- "jupytext": {
1077
- "cell_metadata_filter": "tags,-all"
1078
- },
1079
- "kernelspec": {
1080
- "display_name": "minichain",
1081
- "language": "python",
1082
- "name": "minichain"
1083
- },
1084
- "language_info": {
1085
- "codemirror_mode": {
1086
- "name": "ipython",
1087
- "version": 3
1088
- },
1089
- "file_extension": ".py",
1090
- "mimetype": "text/x-python",
1091
- "name": "python",
1092
- "nbconvert_exporter": "python",
1093
- "pygments_lexer": "ipython3",
1094
- "version": "3.10.6"
1095
- }
1096
- },
1097
- "nbformat": 4,
1098
- "nbformat_minor": 5
1099
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
chatgpt.log DELETED
@@ -1,66 +0,0 @@
1
- {"action_status": "started", "timestamp": 1677514985.975952, "task_uuid": "be24331e-675b-4c1f-aa66-65b84a7602e3", "action_type": "chatgpt", "task_level": [1]}
2
- {"action_status": "started", "timestamp": 1677514986.2875004, "task_uuid": "c2062d1e-37fb-44e9-9e3f-35fd33720af5", "action_type": "<class '__main__.ChatPrompt'>", "task_level": [1]}
3
- {"reason": "module 'numpy' has no attribute 'bool'.\n`np.bool` was a deprecated alias for the builtin `bool`. To avoid this error in existing code, use `bool` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.bool_` here.\nThe aliases was originally deprecated in NumPy 1.20; for more details and guidance see the original release note at:\n https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations", "exception": "builtins.AttributeError", "message": "{\"'input'\": \"State(memory=[], human_input='I want you to act as a Linux terminal. I will type commands and you will reply with what the terminal should show. I want you to only reply with the terminal output inside one unique code block, and nothing else. Do not write explanations. Do not type commands unless I instruct you to do so. When I need to tell you something in English I will do so by putting text inside curly brackets {like this}. My first command is pwd.')\", \"'action_status'\": \"'started'\", \"'timestamp'\": '1677514986.2875783', \"'task_uuid'\": \"'c2062d1e-37fb-44e9-9e3f-35fd33720af5'\", \"'action_type'\": \"'Input Function'\", \"'task_level'\": '[2, 1]'}", "timestamp": 1677514986.287665, "task_uuid": "c2062d1e-37fb-44e9-9e3f-35fd33720af5", "task_level": [3], "message_type": "eliot:destination_failure"}
4
- {"action_status": "succeeded", "timestamp": 1677514986.2912104, "task_uuid": "c2062d1e-37fb-44e9-9e3f-35fd33720af5", "action_type": "Input Function", "task_level": [2, 2]}
5
- {"prompt": "Assistant is a large language model trained by OpenAI.\n\nAssistant is designed to be able to assist with a wide range of tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. As a language model, Assistant is able to generate human-like text based on the input it receives, allowing it to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand.\n\nAssistant is constantly learning and improving, and its capabilities are constantly evolving. It is able to process and understand large amounts of text, and can use this knowledge to provide accurate and informative responses to a wide range of questions. Additionally, Assistant is able to generate its own text based on the input it receives, allowing it to engage in discussions and provide explanations and descriptions on a wide range of topics.\n\nOverall, Assistant is a powerful tool that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. Whether you need help with a specific question or just want to have a conversation about a particular topic, Assistant is here to assist.\n\n\n\nHuman: I want you to act as a Linux terminal. I will type commands and you will reply with what the terminal should show. I want you to only reply with the terminal output inside one unique code block, and nothing else. Do not write explanations. Do not type commands unless I instruct you to do so. When I need to tell you something in English I will do so by putting text inside curly brackets {like this}. My first command is pwd.\nAssistant:", "action_status": "started", "timestamp": 1677514986.2913702, "task_uuid": "c2062d1e-37fb-44e9-9e3f-35fd33720af5", "action_type": "Prompted", "task_level": [4, 1]}
6
- {"action_status": "succeeded", "timestamp": 1677514987.7635746, "task_uuid": "c2062d1e-37fb-44e9-9e3f-35fd33720af5", "action_type": "Prompted", "task_level": [4, 2]}
7
- {"result": "\n```\n$ pwd\n/\n```", "action_status": "started", "timestamp": 1677514987.763787, "task_uuid": "c2062d1e-37fb-44e9-9e3f-35fd33720af5", "action_type": "Result", "task_level": [5, 1]}
8
- {"action_status": "succeeded", "timestamp": 1677514987.763915, "task_uuid": "c2062d1e-37fb-44e9-9e3f-35fd33720af5", "action_type": "Result", "task_level": [5, 2]}
9
- {"action_status": "succeeded", "timestamp": 1677514987.7640302, "task_uuid": "c2062d1e-37fb-44e9-9e3f-35fd33720af5", "action_type": "<class '__main__.ChatPrompt'>", "task_level": [6]}
10
- {"action_status": "started", "timestamp": 1677514987.7762234, "task_uuid": "6a51f09a-2d2a-4883-a864-3bb66ba6215b", "action_type": "<class '__main__.ChatPrompt'>", "task_level": [1]}
11
- {"reason": "module 'numpy' has no attribute 'bool'.\n`np.bool` was a deprecated alias for the builtin `bool`. To avoid this error in existing code, use `bool` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.bool_` here.\nThe aliases was originally deprecated in NumPy 1.20; for more details and guidance see the original release note at:\n https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations", "exception": "builtins.AttributeError", "message": "{\"'input'\": \"State(memory=[('I want you to act as a Linux terminal. I will type commands and you will reply with what the terminal should show. I want you to only reply with the terminal output inside one unique code block, and nothing else. Do not write explanations. Do not type commands unless I instruct you to do so. When I need to tell you something in English I will do so by putting text inside curly brackets {like this}. My first command is pwd.', '\\\\n```\\\\n$ pwd\\\\n/\\\\n```')], human_input='ls ~')\", \"'action_status'\": \"'started'\", \"'timestamp'\": '1677514987.7763977', \"'task_uuid'\": \"'6a51f09a-2d2a-4883-a864-3bb66ba6215b'\", \"'action_type'\": \"'Input Function'\", \"'task_level'\": '[2, 1]'}", "timestamp": 1677514987.776682, "task_uuid": "6a51f09a-2d2a-4883-a864-3bb66ba6215b", "task_level": [3], "message_type": "eliot:destination_failure"}
12
- {"action_status": "succeeded", "timestamp": 1677514987.7836592, "task_uuid": "6a51f09a-2d2a-4883-a864-3bb66ba6215b", "action_type": "Input Function", "task_level": [2, 2]}
13
- {"prompt": "Assistant is a large language model trained by OpenAI.\n\nAssistant is designed to be able to assist with a wide range of tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. As a language model, Assistant is able to generate human-like text based on the input it receives, allowing it to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand.\n\nAssistant is constantly learning and improving, and its capabilities are constantly evolving. It is able to process and understand large amounts of text, and can use this knowledge to provide accurate and informative responses to a wide range of questions. Additionally, Assistant is able to generate its own text based on the input it receives, allowing it to engage in discussions and provide explanations and descriptions on a wide range of topics.\n\nOverall, Assistant is a powerful tool that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. Whether you need help with a specific question or just want to have a conversation about a particular topic, Assistant is here to assist.\n\n\nHuman: I want you to act as a Linux terminal. I will type commands and you will reply with what the terminal should show. I want you to only reply with the terminal output inside one unique code block, and nothing else. Do not write explanations. Do not type commands unless I instruct you to do so. When I need to tell you something in English I will do so by putting text inside curly brackets {like this}. My first command is pwd.\nAI: \n```\n$ pwd\n/\n```\n\n\nHuman: ls ~\nAssistant:", "action_status": "started", "timestamp": 1677514987.7838352, "task_uuid": "6a51f09a-2d2a-4883-a864-3bb66ba6215b", "action_type": "Prompted", "task_level": [4, 1]}
14
- {"action_status": "succeeded", "timestamp": 1677514989.494076, "task_uuid": "6a51f09a-2d2a-4883-a864-3bb66ba6215b", "action_type": "Prompted", "task_level": [4, 2]}
15
- {"result": "\n```\n$ ls ~\nDesktop/ Documents/ Downloads/ Music/ Pictures/ Public/ Templates/ Videos/\n```", "action_status": "started", "timestamp": 1677514989.4943125, "task_uuid": "6a51f09a-2d2a-4883-a864-3bb66ba6215b", "action_type": "Result", "task_level": [5, 1]}
16
- {"action_status": "succeeded", "timestamp": 1677514989.4944377, "task_uuid": "6a51f09a-2d2a-4883-a864-3bb66ba6215b", "action_type": "Result", "task_level": [5, 2]}
17
- {"action_status": "succeeded", "timestamp": 1677514989.4945207, "task_uuid": "6a51f09a-2d2a-4883-a864-3bb66ba6215b", "action_type": "<class '__main__.ChatPrompt'>", "task_level": [6]}
18
- {"action_status": "started", "timestamp": 1677514989.5081844, "task_uuid": "8d9f2eb7-c022-48e6-bdeb-c35b8852c934", "action_type": "<class '__main__.ChatPrompt'>", "task_level": [1]}
19
- {"reason": "module 'numpy' has no attribute 'bool'.\n`np.bool` was a deprecated alias for the builtin `bool`. To avoid this error in existing code, use `bool` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.bool_` here.\nThe aliases was originally deprecated in NumPy 1.20; for more details and guidance see the original release note at:\n https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations", "exception": "builtins.AttributeError", "message": "{\"'input'\": \"State(memory=[('I want you to act as a Linux terminal. I will type commands and you will reply with what the terminal should show. I want you to only reply with the terminal output inside one unique code block, and nothing else. Do not write explanations. Do not type commands unless I instruct you to do so. When I need to tell you something in English I will do so by putting text inside curly brackets {like this}. My first command is pwd.', '\\\\n```\\\\n$ pwd\\\\n/\\\\n```'), ('ls ~', '\\\\n```\\\\n$ ls ~\\\\nDesktop/ Documents/ Downloads/ Music/ Pictures/ Public/ Templates/ Videos/\\\\n```')], human_input='cd ~')\", \"'action_status'\": \"'started'\", \"'timestamp'\": '1677514989.5083773', \"'task_uuid'\": \"'8d9f2eb7-c022-48e6-bdeb-c35b8852c934'\", \"'action_type'\": \"'Input Function'\", \"'task_level'\": '[2, 1]'}", "timestamp": 1677514989.5086985, "task_uuid": "8d9f2eb7-c022-48e6-bdeb-c35b8852c934", "task_level": [3], "message_type": "eliot:destination_failure"}
20
- {"action_status": "succeeded", "timestamp": 1677514989.5162013, "task_uuid": "8d9f2eb7-c022-48e6-bdeb-c35b8852c934", "action_type": "Input Function", "task_level": [2, 2]}
21
- {"prompt": "Assistant is a large language model trained by OpenAI.\n\nAssistant is designed to be able to assist with a wide range of tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. As a language model, Assistant is able to generate human-like text based on the input it receives, allowing it to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand.\n\nAssistant is constantly learning and improving, and its capabilities are constantly evolving. It is able to process and understand large amounts of text, and can use this knowledge to provide accurate and informative responses to a wide range of questions. Additionally, Assistant is able to generate its own text based on the input it receives, allowing it to engage in discussions and provide explanations and descriptions on a wide range of topics.\n\nOverall, Assistant is a powerful tool that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. Whether you need help with a specific question or just want to have a conversation about a particular topic, Assistant is here to assist.\n\n\nHuman: I want you to act as a Linux terminal. I will type commands and you will reply with what the terminal should show. I want you to only reply with the terminal output inside one unique code block, and nothing else. Do not write explanations. Do not type commands unless I instruct you to do so. When I need to tell you something in English I will do so by putting text inside curly brackets {like this}. My first command is pwd.\nAI: \n```\n$ pwd\n/\n```\n\nHuman: ls ~\nAI: \n```\n$ ls ~\nDesktop/ Documents/ Downloads/ Music/ Pictures/ Public/ Templates/ Videos/\n```\n\n\nHuman: cd ~\nAssistant:", "action_status": "started", "timestamp": 1677514989.516413, "task_uuid": "8d9f2eb7-c022-48e6-bdeb-c35b8852c934", "action_type": "Prompted", "task_level": [4, 1]}
22
- {"action_status": "succeeded", "timestamp": 1677514990.9448535, "task_uuid": "8d9f2eb7-c022-48e6-bdeb-c35b8852c934", "action_type": "Prompted", "task_level": [4, 2]}
23
- {"result": " \n```\n$ cd ~\n$ pwd\n/home/username\n```", "action_status": "started", "timestamp": 1677514990.9449363, "task_uuid": "8d9f2eb7-c022-48e6-bdeb-c35b8852c934", "action_type": "Result", "task_level": [5, 1]}
24
- {"action_status": "succeeded", "timestamp": 1677514990.9449837, "task_uuid": "8d9f2eb7-c022-48e6-bdeb-c35b8852c934", "action_type": "Result", "task_level": [5, 2]}
25
- {"action_status": "succeeded", "timestamp": 1677514990.9450145, "task_uuid": "8d9f2eb7-c022-48e6-bdeb-c35b8852c934", "action_type": "<class '__main__.ChatPrompt'>", "task_level": [6]}
26
- {"action_status": "started", "timestamp": 1677514990.949691, "task_uuid": "b0225ad7-9ac0-4735-b895-3fa45eeef9db", "action_type": "<class '__main__.ChatPrompt'>", "task_level": [1]}
27
- {"reason": "module 'numpy' has no attribute 'bool'.\n`np.bool` was a deprecated alias for the builtin `bool`. To avoid this error in existing code, use `bool` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.bool_` here.\nThe aliases was originally deprecated in NumPy 1.20; for more details and guidance see the original release note at:\n https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations", "exception": "builtins.AttributeError", "message": "{\"'input'\": \"State(memory=[('ls ~', '\\\\n```\\\\n$ ls ~\\\\nDesktop/ Documents/ Downloads/ Music/ Pictures/ Public/ Templates/ Videos/\\\\n```'), ('cd ~', ' \\\\n```\\\\n$ cd ~\\\\n$ pwd\\\\n/home/username\\\\n```')], human_input='{Please make a file jokes.txt inside and put some jokes inside}')\", \"'action_status'\": \"'started'\", \"'timestamp'\": '1677514990.9499614', \"'task_uuid'\": \"'b0225ad7-9ac0-4735-b895-3fa45eeef9db'\", \"'action_type'\": \"'Input Function'\", \"'task_level'\": '[2, 1]'}", "timestamp": 1677514990.9501207, "task_uuid": "b0225ad7-9ac0-4735-b895-3fa45eeef9db", "task_level": [3], "message_type": "eliot:destination_failure"}
28
- {"action_status": "succeeded", "timestamp": 1677514990.9532957, "task_uuid": "b0225ad7-9ac0-4735-b895-3fa45eeef9db", "action_type": "Input Function", "task_level": [2, 2]}
29
- {"prompt": "Assistant is a large language model trained by OpenAI.\n\nAssistant is designed to be able to assist with a wide range of tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. As a language model, Assistant is able to generate human-like text based on the input it receives, allowing it to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand.\n\nAssistant is constantly learning and improving, and its capabilities are constantly evolving. It is able to process and understand large amounts of text, and can use this knowledge to provide accurate and informative responses to a wide range of questions. Additionally, Assistant is able to generate its own text based on the input it receives, allowing it to engage in discussions and provide explanations and descriptions on a wide range of topics.\n\nOverall, Assistant is a powerful tool that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. Whether you need help with a specific question or just want to have a conversation about a particular topic, Assistant is here to assist.\n\n\nHuman: ls ~\nAI: \n```\n$ ls ~\nDesktop/ Documents/ Downloads/ Music/ Pictures/ Public/ Templates/ Videos/\n```\n\nHuman: cd ~\nAI: \n```\n$ cd ~\n$ pwd\n/home/username\n```\n\n\nHuman: {Please make a file jokes.txt inside and put some jokes inside}\nAssistant:", "action_status": "started", "timestamp": 1677514990.9533696, "task_uuid": "b0225ad7-9ac0-4735-b895-3fa45eeef9db", "action_type": "Prompted", "task_level": [4, 1]}
30
- {"action_status": "succeeded", "timestamp": 1677514995.858929, "task_uuid": "b0225ad7-9ac0-4735-b895-3fa45eeef9db", "action_type": "Prompted", "task_level": [4, 2]}
31
- {"result": "\n\n```\n$ touch jokes.txt\n$ echo \"Why did the chicken cross the road? To get to the other side!\" >> jokes.txt\n$ echo \"What did the fish say when it hit the wall? Dam!\" >> jokes.txt\n$ echo \"Why did the scarecrow win the Nobel Prize? Because he was outstanding in his field!\" >> jokes.txt\n```", "action_status": "started", "timestamp": 1677514995.8590267, "task_uuid": "b0225ad7-9ac0-4735-b895-3fa45eeef9db", "action_type": "Result", "task_level": [5, 1]}
32
- {"action_status": "succeeded", "timestamp": 1677514995.8590858, "task_uuid": "b0225ad7-9ac0-4735-b895-3fa45eeef9db", "action_type": "Result", "task_level": [5, 2]}
33
- {"action_status": "succeeded", "timestamp": 1677514995.859122, "task_uuid": "b0225ad7-9ac0-4735-b895-3fa45eeef9db", "action_type": "<class '__main__.ChatPrompt'>", "task_level": [6]}
34
- {"action_status": "started", "timestamp": 1677514995.86515, "task_uuid": "60ca1813-07db-499b-b10b-d5b64709303f", "action_type": "<class '__main__.ChatPrompt'>", "task_level": [1]}
35
- {"reason": "module 'numpy' has no attribute 'bool'.\n`np.bool` was a deprecated alias for the builtin `bool`. To avoid this error in existing code, use `bool` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.bool_` here.\nThe aliases was originally deprecated in NumPy 1.20; for more details and guidance see the original release note at:\n https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations", "exception": "builtins.AttributeError", "message": "{\"'input'\": 'State(memory=[(\\'cd ~\\', \\' \\\\n```\\\\n$ cd ~\\\\n$ pwd\\\\n/home/username\\\\n```\\'), (\\'{Please make a file jokes.txt inside and put some jokes inside}\\', \\'\\\\n\\\\n```\\\\n$ touch jokes.txt\\\\n$ echo \"Why did the chicken cross the road? To get to the other side!\" >> jokes.txt\\\\n$ echo \"What did the fish say when it hit the wall? Dam!\" >> jokes.txt\\\\n$ echo \"Why did the scarecrow win the Nobel Prize? Because he was outstanding in his field!\" >> jokes.txt\\\\n```\\')], human_input=\\'echo -e \"x=lambda y:y*5+3;print(\\\\\\'Result:\\\\\\' + str(x(6)))\" > run.py && python3 run.py\\')', \"'action_status'\": \"'started'\", \"'timestamp'\": '1677514995.8653514', \"'task_uuid'\": \"'60ca1813-07db-499b-b10b-d5b64709303f'\", \"'action_type'\": \"'Input Function'\", \"'task_level'\": '[2, 1]'}", "timestamp": 1677514995.8655088, "task_uuid": "60ca1813-07db-499b-b10b-d5b64709303f", "task_level": [3], "message_type": "eliot:destination_failure"}
36
- {"action_status": "succeeded", "timestamp": 1677514995.8692126, "task_uuid": "60ca1813-07db-499b-b10b-d5b64709303f", "action_type": "Input Function", "task_level": [2, 2]}
37
- {"prompt": "Assistant is a large language model trained by OpenAI.\n\nAssistant is designed to be able to assist with a wide range of tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. As a language model, Assistant is able to generate human-like text based on the input it receives, allowing it to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand.\n\nAssistant is constantly learning and improving, and its capabilities are constantly evolving. It is able to process and understand large amounts of text, and can use this knowledge to provide accurate and informative responses to a wide range of questions. Additionally, Assistant is able to generate its own text based on the input it receives, allowing it to engage in discussions and provide explanations and descriptions on a wide range of topics.\n\nOverall, Assistant is a powerful tool that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. Whether you need help with a specific question or just want to have a conversation about a particular topic, Assistant is here to assist.\n\n\nHuman: cd ~\nAI: \n```\n$ cd ~\n$ pwd\n/home/username\n```\n\nHuman: {Please make a file jokes.txt inside and put some jokes inside}\nAI: \n\n```\n$ touch jokes.txt\n$ echo \"Why did the chicken cross the road? To get to the other side!\" >> jokes.txt\n$ echo \"What did the fish say when it hit the wall? Dam!\" >> jokes.txt\n$ echo \"Why did the scarecrow win the Nobel Prize? Because he was outstanding in his field!\" >> jokes.txt\n```\n\n\nHuman: echo -e \"x=lambda y:y*5+3;print('Result:' + str(x(6)))\" > run.py && python3 run.py\nAssistant:", "action_status": "started", "timestamp": 1677514995.8693106, "task_uuid": "60ca1813-07db-499b-b10b-d5b64709303f", "action_type": "Prompted", "task_level": [4, 1]}
38
- {"action_status": "succeeded", "timestamp": 1677514999.1287231, "task_uuid": "60ca1813-07db-499b-b10b-d5b64709303f", "action_type": "Prompted", "task_level": [4, 2]}
39
- {"result": "\n\n```\n$ echo -e \"x=lambda y:y*5+3;print('Result:' + str(x(6)))\" > run.py\n$ python3 run.py\nResult: 33\n```", "action_status": "started", "timestamp": 1677514999.1288157, "task_uuid": "60ca1813-07db-499b-b10b-d5b64709303f", "action_type": "Result", "task_level": [5, 1]}
40
- {"action_status": "succeeded", "timestamp": 1677514999.1288638, "task_uuid": "60ca1813-07db-499b-b10b-d5b64709303f", "action_type": "Result", "task_level": [5, 2]}
41
- {"action_status": "succeeded", "timestamp": 1677514999.1288946, "task_uuid": "60ca1813-07db-499b-b10b-d5b64709303f", "action_type": "<class '__main__.ChatPrompt'>", "task_level": [6]}
42
- {"action_status": "started", "timestamp": 1677514999.1336586, "task_uuid": "5a8d829e-f545-4f75-b1b3-efb6cdb5d8e4", "action_type": "<class '__main__.ChatPrompt'>", "task_level": [1]}
43
- {"reason": "module 'numpy' has no attribute 'bool'.\n`np.bool` was a deprecated alias for the builtin `bool`. To avoid this error in existing code, use `bool` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.bool_` here.\nThe aliases was originally deprecated in NumPy 1.20; for more details and guidance see the original release note at:\n https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations", "exception": "builtins.AttributeError", "message": "{\"'input'\": 'State(memory=[(\\'{Please make a file jokes.txt inside and put some jokes inside}\\', \\'\\\\n\\\\n```\\\\n$ touch jokes.txt\\\\n$ echo \"Why did the chicken cross the road? To get to the other side!\" >> jokes.txt\\\\n$ echo \"What did the fish say when it hit the wall? Dam!\" >> jokes.txt\\\\n$ echo \"Why did the scarecrow win the Nobel Prize? Because he was outstanding in his field!\" >> jokes.txt\\\\n```\\'), (\\'echo -e \"x=lambda y:y*5+3;print(\\\\\\'Result:\\\\\\' + str(x(6)))\" > run.py && python3 run.py\\', \\'\\\\n\\\\n```\\\\n$ echo -e \"x=lambda y:y*5+3;print(\\\\\\'Result:\\\\\\' + str(x(6)))\" > run.py\\\\n$ python3 run.py\\\\nResult: 33\\\\n```\\')], human_input=\\'echo -e \"print(list(filter(lambda x: all(x%d for d in range(2,x)),range(2,3**10)))[:10])\" > run.py && python3 run.py\\')', \"'action_status'\": \"'started'\", \"'timestamp'\": '1677514999.1337094', \"'task_uuid'\": \"'5a8d829e-f545-4f75-b1b3-efb6cdb5d8e4'\", \"'action_type'\": \"'Input Function'\", \"'task_level'\": '[2, 1]'}", "timestamp": 1677514999.1337867, "task_uuid": "5a8d829e-f545-4f75-b1b3-efb6cdb5d8e4", "task_level": [3], "message_type": "eliot:destination_failure"}
44
- {"action_status": "succeeded", "timestamp": 1677514999.135381, "task_uuid": "5a8d829e-f545-4f75-b1b3-efb6cdb5d8e4", "action_type": "Input Function", "task_level": [2, 2]}
45
- {"prompt": "Assistant is a large language model trained by OpenAI.\n\nAssistant is designed to be able to assist with a wide range of tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. As a language model, Assistant is able to generate human-like text based on the input it receives, allowing it to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand.\n\nAssistant is constantly learning and improving, and its capabilities are constantly evolving. It is able to process and understand large amounts of text, and can use this knowledge to provide accurate and informative responses to a wide range of questions. Additionally, Assistant is able to generate its own text based on the input it receives, allowing it to engage in discussions and provide explanations and descriptions on a wide range of topics.\n\nOverall, Assistant is a powerful tool that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. Whether you need help with a specific question or just want to have a conversation about a particular topic, Assistant is here to assist.\n\n\nHuman: {Please make a file jokes.txt inside and put some jokes inside}\nAI: \n\n```\n$ touch jokes.txt\n$ echo \"Why did the chicken cross the road? To get to the other side!\" >> jokes.txt\n$ echo \"What did the fish say when it hit the wall? Dam!\" >> jokes.txt\n$ echo \"Why did the scarecrow win the Nobel Prize? Because he was outstanding in his field!\" >> jokes.txt\n```\n\nHuman: echo -e \"x=lambda y:y*5+3;print('Result:' + str(x(6)))\" > run.py && python3 run.py\nAI: \n\n```\n$ echo -e \"x=lambda y:y*5+3;print('Result:' + str(x(6)))\" > run.py\n$ python3 run.py\nResult: 33\n```\n\n\nHuman: echo -e \"print(list(filter(lambda x: all(x%d for d in range(2,x)),range(2,3**10)))[:10])\" > run.py && python3 run.py\nAssistant:", "action_status": "started", "timestamp": 1677514999.1354215, "task_uuid": "5a8d829e-f545-4f75-b1b3-efb6cdb5d8e4", "action_type": "Prompted", "task_level": [4, 1]}
46
- {"action_status": "succeeded", "timestamp": 1677515003.1960745, "task_uuid": "5a8d829e-f545-4f75-b1b3-efb6cdb5d8e4", "action_type": "Prompted", "task_level": [4, 2]}
47
- {"result": "\n\n```\n$ echo -e \"print(list(filter(lambda x: all(x%d for d in range(2,x)),range(2,3**10)))[:10])\" > run.py\n$ python3 run.py\n[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]\n```", "action_status": "started", "timestamp": 1677515003.1962907, "task_uuid": "5a8d829e-f545-4f75-b1b3-efb6cdb5d8e4", "action_type": "Result", "task_level": [5, 1]}
48
- {"action_status": "succeeded", "timestamp": 1677515003.1963375, "task_uuid": "5a8d829e-f545-4f75-b1b3-efb6cdb5d8e4", "action_type": "Result", "task_level": [5, 2]}
49
- {"action_status": "succeeded", "timestamp": 1677515003.1963675, "task_uuid": "5a8d829e-f545-4f75-b1b3-efb6cdb5d8e4", "action_type": "<class '__main__.ChatPrompt'>", "task_level": [6]}
50
- {"action_status": "started", "timestamp": 1677515003.1995413, "task_uuid": "00a84ff6-6fc1-4afc-88b1-e82a893855d3", "action_type": "<class '__main__.ChatPrompt'>", "task_level": [1]}
51
- {"reason": "module 'numpy' has no attribute 'bool'.\n`np.bool` was a deprecated alias for the builtin `bool`. To avoid this error in existing code, use `bool` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.bool_` here.\nThe aliases was originally deprecated in NumPy 1.20; for more details and guidance see the original release note at:\n https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations", "exception": "builtins.AttributeError", "message": "{\"'input'\": 'State(memory=[(\\'echo -e \"x=lambda y:y*5+3;print(\\\\\\'Result:\\\\\\' + str(x(6)))\" > run.py && python3 run.py\\', \\'\\\\n\\\\n```\\\\n$ echo -e \"x=lambda y:y*5+3;print(\\\\\\'Result:\\\\\\' + str(x(6)))\" > run.py\\\\n$ python3 run.py\\\\nResult: 33\\\\n```\\'), (\\'echo -e \"print(list(filter(lambda x: all(x%d for d in range(2,x)),range(2,3**10)))[:10])\" > run.py && python3 run.py\\', \\'\\\\n\\\\n```\\\\n$ echo -e \"print(list(filter(lambda x: all(x%d for d in range(2,x)),range(2,3**10)))[:10])\" > run.py\\\\n$ python3 run.py\\\\n[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]\\\\n```\\')], human_input=\\'echo -e \"echo \\\\\\'Hello from Docker\" > entrypoint.sh && echo -e \"FROM ubuntu:20.04\\\\nCOPY entrypoint.sh entrypoint.sh\\\\nENTRYPOINT [\"/bin/sh\",\"entrypoint.sh\"]\">Dockerfile && docker build . -t my_docker_image && docker run -t my_docker_image\\')', \"'action_status'\": \"'started'\", \"'timestamp'\": '1677515003.1996367', \"'task_uuid'\": \"'00a84ff6-6fc1-4afc-88b1-e82a893855d3'\", \"'action_type'\": \"'Input Function'\", \"'task_level'\": '[2, 1]'}", "timestamp": 1677515003.1997197, "task_uuid": "00a84ff6-6fc1-4afc-88b1-e82a893855d3", "task_level": [3], "message_type": "eliot:destination_failure"}
52
- {"action_status": "succeeded", "timestamp": 1677515003.201452, "task_uuid": "00a84ff6-6fc1-4afc-88b1-e82a893855d3", "action_type": "Input Function", "task_level": [2, 2]}
53
- {"prompt": "Assistant is a large language model trained by OpenAI.\n\nAssistant is designed to be able to assist with a wide range of tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. As a language model, Assistant is able to generate human-like text based on the input it receives, allowing it to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand.\n\nAssistant is constantly learning and improving, and its capabilities are constantly evolving. It is able to process and understand large amounts of text, and can use this knowledge to provide accurate and informative responses to a wide range of questions. Additionally, Assistant is able to generate its own text based on the input it receives, allowing it to engage in discussions and provide explanations and descriptions on a wide range of topics.\n\nOverall, Assistant is a powerful tool that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. Whether you need help with a specific question or just want to have a conversation about a particular topic, Assistant is here to assist.\n\n\nHuman: echo -e \"x=lambda y:y*5+3;print('Result:' + str(x(6)))\" > run.py && python3 run.py\nAI: \n\n```\n$ echo -e \"x=lambda y:y*5+3;print('Result:' + str(x(6)))\" > run.py\n$ python3 run.py\nResult: 33\n```\n\nHuman: echo -e \"print(list(filter(lambda x: all(x%d for d in range(2,x)),range(2,3**10)))[:10])\" > run.py && python3 run.py\nAI: \n\n```\n$ echo -e \"print(list(filter(lambda x: all(x%d for d in range(2,x)),range(2,3**10)))[:10])\" > run.py\n$ python3 run.py\n[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]\n```\n\n\nHuman: echo -e \"echo 'Hello from Docker\" > entrypoint.sh && echo -e \"FROM ubuntu:20.04\nCOPY entrypoint.sh entrypoint.sh\nENTRYPOINT [\"/bin/sh\",\"entrypoint.sh\"]\">Dockerfile && docker build . -t my_docker_image && docker run -t my_docker_image\nAssistant:", "action_status": "started", "timestamp": 1677515003.2015123, "task_uuid": "00a84ff6-6fc1-4afc-88b1-e82a893855d3", "action_type": "Prompted", "task_level": [4, 1]}
54
- {"action_status": "succeeded", "timestamp": 1677515008.0399287, "task_uuid": "00a84ff6-6fc1-4afc-88b1-e82a893855d3", "action_type": "Prompted", "task_level": [4, 2]}
55
- {"result": "\n\n```\n$ echo -e \"echo 'Hello from Docker\" > entrypoint.sh\n$ echo -e \"FROM ubuntu:20.04\nCOPY entrypoint.sh entrypoint.sh\nENTRYPOINT [\"/bin/sh\",\"entrypoint.sh\"]\">Dockerfile\n$ docker build . -t my_docker_image\n$ docker run -t my_docker_image\nHello from Docker\n```", "action_status": "started", "timestamp": 1677515008.0401833, "task_uuid": "00a84ff6-6fc1-4afc-88b1-e82a893855d3", "action_type": "Result", "task_level": [5, 1]}
56
- {"action_status": "succeeded", "timestamp": 1677515008.040339, "task_uuid": "00a84ff6-6fc1-4afc-88b1-e82a893855d3", "action_type": "Result", "task_level": [5, 2]}
57
- {"action_status": "succeeded", "timestamp": 1677515008.040439, "task_uuid": "00a84ff6-6fc1-4afc-88b1-e82a893855d3", "action_type": "<class '__main__.ChatPrompt'>", "task_level": [6]}
58
- {"action_status": "started", "timestamp": 1677515008.053587, "task_uuid": "ea339a52-82af-4c19-8ee6-1d2f081bc437", "action_type": "<class '__main__.ChatPrompt'>", "task_level": [1]}
59
- {"reason": "module 'numpy' has no attribute 'bool'.\n`np.bool` was a deprecated alias for the builtin `bool`. To avoid this error in existing code, use `bool` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.bool_` here.\nThe aliases was originally deprecated in NumPy 1.20; for more details and guidance see the original release note at:\n https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations", "exception": "builtins.AttributeError", "message": "{\"'input'\": 'State(memory=[(\\'echo -e \"print(list(filter(lambda x: all(x%d for d in range(2,x)),range(2,3**10)))[:10])\" > run.py && python3 run.py\\', \\'\\\\n\\\\n```\\\\n$ echo -e \"print(list(filter(lambda x: all(x%d for d in range(2,x)),range(2,3**10)))[:10])\" > run.py\\\\n$ python3 run.py\\\\n[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]\\\\n```\\'), (\\'echo -e \"echo \\\\\\'Hello from Docker\" > entrypoint.sh && echo -e \"FROM ubuntu:20.04\\\\nCOPY entrypoint.sh entrypoint.sh\\\\nENTRYPOINT [\"/bin/sh\",\"entrypoint.sh\"]\">Dockerfile && docker build . -t my_docker_image && docker run -t my_docker_image\\', \\'\\\\n\\\\n```\\\\n$ echo -e \"echo \\\\\\'Hello from Docker\" > entrypoint.sh\\\\n$ echo -e \"FROM ubuntu:20.04\\\\nCOPY entrypoint.sh entrypoint.sh\\\\nENTRYPOINT [\"/bin/sh\",\"entrypoint.sh\"]\">Dockerfile\\\\n$ docker build . -t my_docker_image\\\\n$ docker run -t my_docker_image\\\\nHello from Docker\\\\n```\\')], human_input=\\'nvidia-smi\\')', \"'action_status'\": \"'started'\", \"'timestamp'\": '1677515008.0539572', \"'task_uuid'\": \"'ea339a52-82af-4c19-8ee6-1d2f081bc437'\", \"'action_type'\": \"'Input Function'\", \"'task_level'\": '[2, 1]'}", "timestamp": 1677515008.0543113, "task_uuid": "ea339a52-82af-4c19-8ee6-1d2f081bc437", "task_level": [3], "message_type": "eliot:destination_failure"}
60
- {"action_status": "succeeded", "timestamp": 1677515008.0610886, "task_uuid": "ea339a52-82af-4c19-8ee6-1d2f081bc437", "action_type": "Input Function", "task_level": [2, 2]}
61
- {"prompt": "Assistant is a large language model trained by OpenAI.\n\nAssistant is designed to be able to assist with a wide range of tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. As a language model, Assistant is able to generate human-like text based on the input it receives, allowing it to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand.\n\nAssistant is constantly learning and improving, and its capabilities are constantly evolving. It is able to process and understand large amounts of text, and can use this knowledge to provide accurate and informative responses to a wide range of questions. Additionally, Assistant is able to generate its own text based on the input it receives, allowing it to engage in discussions and provide explanations and descriptions on a wide range of topics.\n\nOverall, Assistant is a powerful tool that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. Whether you need help with a specific question or just want to have a conversation about a particular topic, Assistant is here to assist.\n\n\nHuman: echo -e \"print(list(filter(lambda x: all(x%d for d in range(2,x)),range(2,3**10)))[:10])\" > run.py && python3 run.py\nAI: \n\n```\n$ echo -e \"print(list(filter(lambda x: all(x%d for d in range(2,x)),range(2,3**10)))[:10])\" > run.py\n$ python3 run.py\n[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]\n```\n\nHuman: echo -e \"echo 'Hello from Docker\" > entrypoint.sh && echo -e \"FROM ubuntu:20.04\nCOPY entrypoint.sh entrypoint.sh\nENTRYPOINT [\"/bin/sh\",\"entrypoint.sh\"]\">Dockerfile && docker build . -t my_docker_image && docker run -t my_docker_image\nAI: \n\n```\n$ echo -e \"echo 'Hello from Docker\" > entrypoint.sh\n$ echo -e \"FROM ubuntu:20.04\nCOPY entrypoint.sh entrypoint.sh\nENTRYPOINT [\"/bin/sh\",\"entrypoint.sh\"]\">Dockerfile\n$ docker build . -t my_docker_image\n$ docker run -t my_docker_image\nHello from Docker\n```\n\n\nHuman: nvidia-smi\nAssistant:", "action_status": "started", "timestamp": 1677515008.0612898, "task_uuid": "ea339a52-82af-4c19-8ee6-1d2f081bc437", "action_type": "Prompted", "task_level": [4, 1]}
62
- {"action_status": "succeeded", "timestamp": 1677515019.9196224, "task_uuid": "ea339a52-82af-4c19-8ee6-1d2f081bc437", "action_type": "Prompted", "task_level": [4, 2]}
63
- {"result": "\n\n```\n$ nvidia-smi\nSat May 15 21:45:02 2021 \n+-----------------------------------------------------------------------------+\n| NVIDIA-SMI 460.32.03 Driver Version: 460.32.03 CUDA Version: 11.2 |\n|-------------------------------+----------------------+----------------------+\n| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |\n| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |\n|===============================+======================+======================|\n| 0 GeForce RTX 208... Off | 00000000:01:00.0 Off | N/A |\n| N/A 45C P0 28W / N/A | 590MiB / 7979MiB | 0% Default |\n+-------------------------------+----------------------+----------------------+\n \n+-----------------------------------------------------------------------------+\n| Processes: GPU Memory |\n| GPU PID Type Process name Usage |\n|=============================================================================|\n|", "action_status": "started", "timestamp": 1677515019.919849, "task_uuid": "ea339a52-82af-4c19-8ee6-1d2f081bc437", "action_type": "Result", "task_level": [5, 1]}
64
- {"action_status": "succeeded", "timestamp": 1677515019.920001, "task_uuid": "ea339a52-82af-4c19-8ee6-1d2f081bc437", "action_type": "Result", "task_level": [5, 2]}
65
- {"action_status": "succeeded", "timestamp": 1677515019.9200878, "task_uuid": "ea339a52-82af-4c19-8ee6-1d2f081bc437", "action_type": "<class '__main__.ChatPrompt'>", "task_level": [6]}
66
- {"action_status": "succeeded", "timestamp": 1677515019.9287043, "task_uuid": "be24331e-675b-4c1f-aa66-65b84a7602e3", "action_type": "chatgpt", "task_level": [2]}