Spaces:
Runtime error
Runtime error
File size: 7,435 Bytes
d89098d 64c717a d89098d 64c717a d89098d 54f6682 64c717a 6b5a34f d89098d 64c717a f4f594a 68eace8 f4f594a 68eace8 f4f594a 68eace8 f4f594a 68eace8 f4f594a 64c717a 513a0c5 64c717a 024685f 411008f 64c717a 94a07a2 411008f 513a0c5 411008f 64c717a 513a0c5 64c717a 513a0c5 64c717a a662dcb 64c717a 513a0c5 77b425a 513a0c5 64c717a 513a0c5 54f6682 404174f e7c875a 54f6682 e7c875a d89098d 6b5a34f d89098d f4f594a 411008f 513a0c5 02feb96 513a0c5 1d9d097 513a0c5 02f3e99 513a0c5 64c717a d89098d 5c79297 3d9ebd2 f4f594a 5c79297 8b969e2 3d9ebd2 64c717a e821f26 64c717a 510d222 64c717a 2f2050d 1a4dba1 2f2050d 64c717a 5fb7f73 64c717a c6ed7c3 64c717a 5002a2b 64c717a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
import os
import tempfile
import fitz
import gradio as gr
import PIL
import skimage
from fastai.learner import load_learner
from fastai.vision.all import *
from fpdf import FPDF
from huggingface_hub import hf_hub_download
from icevision.all import *
from icevision.models.checkpoint import *
from PIL import Image as PILImage
checkpoint_path = "./allsynthetic-imgsize768.pth"
checkpoint_and_model = model_from_checkpoint(checkpoint_path)
model = checkpoint_and_model["model"]
model_type = checkpoint_and_model["model_type"]
class_map = checkpoint_and_model["class_map"]
img_size = checkpoint_and_model["img_size"]
valid_tfms = tfms.A.Adapter(
[*tfms.A.resize_and_pad(img_size), tfms.A.Normalize()]
)
learn = load_learner(
hf_hub_download("strickvl/redaction-classifier-fastai", "model.pkl")
)
labels = learn.dls.vocab
def get_content_area(pred_dict) -> int:
if "content" not in pred_dict["detection"]["labels"]:
return 0
content_bboxes = [
pred_dict["detection"]["bboxes"][idx]
for idx, label in enumerate(pred_dict["detection"]["labels"])
if label == "content"
]
cb = content_bboxes[0]
return (cb.xmax - cb.xmin) * (cb.ymax - cb.ymin)
def get_redaction_area(pred_dict) -> int:
if "redaction" not in pred_dict["detection"]["labels"]:
return 0
redaction_bboxes = [
pred_dict["detection"]["bboxes"][idx]
for idx, label in enumerate(pred_dict["detection"]["labels"])
if label == "redaction"
]
return sum(
(bbox.xmax - bbox.xmin) * (bbox.ymax - bbox.ymin)
for bbox in redaction_bboxes
)
def predict(pdf, confidence, generate_file):
filename_without_extension = pdf.name[:-4]
document = fitz.open(pdf.name)
results = []
images = []
total_image_areas = 0
total_content_areas = 0
total_redaction_area = 0
tmp_dir = tempfile.gettempdir()
for page_num, page in enumerate(document, start=1):
image_pixmap = page.get_pixmap()
image = image_pixmap.tobytes()
_, _, probs = learn.predict(image)
results.append(
{labels[i]: float(probs[i]) for i in range(len(labels))}
)
if probs[0] > (confidence / 100):
redaction_count = len(images)
if not os.path.exists(
os.path.join(tmp_dir, filename_without_extension)
):
os.makedirs(os.path.join(tmp_dir, filename_without_extension))
image_pixmap.save(
os.path.join(
tmp_dir, filename_without_extension, f"page-{page_num}.png"
)
)
images.append(
[
f"Redacted page #{redaction_count + 1} on page {page_num}",
os.path.join(
tmp_dir,
filename_without_extension,
f"page-{page_num}.png",
),
]
)
redacted_pages = [
str(page + 1)
for page in range(len(results))
if results[page]["redacted"] > (confidence / 100)
]
report = os.path.join(
tmp_dir, filename_without_extension, "redacted_pages.pdf"
)
if generate_file:
pdf = FPDF(unit="cm", format="A4")
pdf.set_auto_page_break(0)
imagelist = sorted(
[
i
for i in os.listdir(
os.path.join(tmp_dir, filename_without_extension)
)
if i.endswith("png")
]
)
for image in imagelist:
with PILImage.open(
os.path.join(tmp_dir, filename_without_extension, image)
) as img:
size = img.size
width, height = size
if width > height:
pdf.add_page(orientation="L")
else:
pdf.add_page(orientation="P")
pred_dict = model_type.end2end_detect(
img,
valid_tfms,
model,
class_map=class_map,
detection_threshold=confidence / 100,
display_label=True,
display_bbox=True,
return_img=True,
font_size=16,
label_color="#FF59D6",
)
total_image_areas += pred_dict["width"] * pred_dict["height"]
total_content_areas += get_content_area(pred_dict)
total_redaction_area += get_redaction_area(pred_dict)
pred_dict["img"].save(
os.path.join(
tmp_dir, filename_without_extension, f"pred-{image}"
),
)
# TODO: resize image such that it fits the pdf
pdf.image(
os.path.join(
tmp_dir, filename_without_extension, f"pred-{image}"
),
w=pdf.w,
h=pdf.h,
)
pdf.output(report, "F")
text_output = f"A total of {len(redacted_pages)} pages were redacted. \n\nThe redacted page numbers were: {', '.join(redacted_pages)}. \n\n"
if not generate_file:
return text_output, images, None
total_redaction_proportion = round(
(total_redaction_area / total_image_areas) * 100, 1
)
content_redaction_proportion = round(
(total_redaction_area / total_content_areas) * 100, 1
)
redaction_analysis = f"- {total_redaction_proportion}% of the total area of the redacted pages was redacted. \n- {content_redaction_proportion}% of the actual content of those redacted pages was redacted."
return text_output + redaction_analysis, images, report
title = "Redaction Detector for PDFs"
description = "An MVP app for detection, extraction and analysis of PDF documents that contain redactions. Two models are used for this demo, both trained on publicly released redacted (and unredacted) FOIA documents: \n\n - Classification model trained using [fastai](https://github.com/fastai/fastai) \n- Object detection model trained using [IceVision](https://airctic.com/0.12.0/)"
with open("article.md") as f:
article = f.read()
examples = [
["test1.pdf", 80, True],
["test2.pdf", 80, False],
["test3.pdf", 80, True],
["test4.pdf", 80, False],
["test5.pdf", 80, False],
]
interpretation = "default"
enable_queue = True
theme = "grass"
allow_flagging = "never"
demo = gr.Interface(
fn=predict,
inputs=[
gr.inputs.File(label="PDF file", file_count="single"),
gr.inputs.Slider(
minimum=0,
maximum=100,
step=None,
default=80,
label="Confidence",
optional=False,
),
gr.inputs.Checkbox(
label="Analyse and extract redacted images", default=True
),
],
outputs=[
gr.outputs.Textbox(label="Document Analysis"),
gr.outputs.Carousel(["text", "image"], label="Redacted pages"),
gr.outputs.File(label="Download redacted pages"),
],
title=title,
description=description,
article=article,
theme=theme,
allow_flagging=allow_flagging,
examples=examples,
interpretation=interpretation,
)
demo.launch(
cache_examples=True,
enable_queue=enable_queue,
)
|