student0822's picture
Update app.py
e8d514a verified
import gradio as gr
from transformers import pipeline, AutoModelForImageClassification, AutoFeatureExtractor
from PIL import Image
import torch
import os
import json
# 设置 Kaggle API 凭证
# 设置 Kaggle API 凭证
# 设置 Kaggle API 凭证
def setup_kaggle():
# 创建 .kaggle 目录
os.makedirs(os.path.expanduser("~/.kaggle"), exist_ok=True)
# 读取并写入 kaggle.json 文件
with open("./kaggle.json", "r") as f: # 使用相对路径 ./kaggle.json
kaggle_token = json.load(f)
with open(os.path.expanduser("~/.kaggle/kaggle.json"), "w") as f:
json.dump(kaggle_token, f)
os.chmod(os.path.expanduser("~/.kaggle/kaggle.json"), 0o600)
# 从 Kaggle 下载模型文件
def download_model():
# 设置 Kaggle API 凭证
setup_kaggle()
# 使用 Kaggle API 下载文件
os.system("kaggle kernels output sonia0822/20241015 -p /app") # 修改为您的 Kernel ID 和下载路径
# 确保模型文件已下载
if not os.path.exists("/app/model.pth"):
raise FileNotFoundError("模型文件下载失败!")
# 在加载模型前下载
if not os.path.exists("model.pth"):
print("Downloading model...")
download_model()
# 模型保存路径
classification_model_path = "/app/model.pth"
gpt2_model_path = "/app/gpt2-finetuned"
# 加载分类模型和特征提取器
print("加载分类模型...")
classification_model = AutoModelForImageClassification.from_pretrained(
"microsoft/beit-base-patch16-224-pt22k", num_labels=16
)
classification_model.load_state_dict(torch.load(classification_model_path, map_location="cpu"))
feature_extractor = AutoFeatureExtractor.from_pretrained("microsoft/beit-base-patch16-224-pt22k")
print("分类模型加载成功")
# 加载 GPT-2 文本生成模型
print("加载 GPT-2 模型...")
gpt2_generator = pipeline("text-generation", model=gpt2_model_path, tokenizer=gpt2_model_path)
print("GPT-2 模型加载成功")
# 定义风格标签列表
art_styles = [
"现实主义", "巴洛克", "后印象派", "印象派", "浪漫主义", "超现实主义",
"表现主义", "立体派", "野兽派", "抽象艺术", "新艺术", "象征主义",
"新古典主义", "洛可可", "文艺复兴", "极简主义"
]
# 标签映射
label_mapping = {0: 0, 2: 1, 3: 2, 4: 3, 7: 4, 9: 5, 10: 6, 12: 7, 15: 8, 17: 9, 18: 10, 20: 11, 21: 12, 23: 13, 24: 14, 25: 15}
reverse_label_mapping = {v: k for k, v in label_mapping.items()}
# 生成风格描述的函数
def classify_and_generate_description(image):
image = image.convert("RGB")
inputs = feature_extractor(images=image, return_tensors="pt").to("cpu")
classification_model.eval()
with torch.no_grad():
outputs = classification_model(**inputs).logits
predicted_class = torch.argmax(outputs, dim=1).item()
predicted_label = reverse_label_mapping.get(predicted_class, "未知")
predicted_style = art_styles[predicted_class] if predicted_class < len(art_styles) else "未知"
prompt = f"请详细描述{predicted_style}的艺术风格。"
description = gpt2_generator(prompt, max_length=100, num_return_sequences=1)[0]["generated_text"]
return predicted_style, description
def ask_gpt2(question):
response = gpt2_generator(question, max_length=100, num_return_sequences=1)[0]["generated_text"]
return response
# Gradio 界面
with gr.Blocks() as demo:
gr.Markdown("# 艺术风格分类和生成描述")
with gr.Row():
image_input = gr.Image(label="上传一张艺术图片")
style_output = gr.Textbox(label="预测的艺术风格")
description_output = gr.Textbox(label="生成的风格描述")
with gr.Row():
question_input = gr.Textbox(label="输入问题")
answer_output = gr.Textbox(label="GPT-2 生成的回答")
classify_btn = gr.Button("生成风格描述")
question_btn = gr.Button("问 GPT-2 一个问题")
classify_btn.click(fn=classify_and_generate_description, inputs=image_input, outputs=[style_output, description_output])
question_btn.click(fn=ask_gpt2, inputs=question_input, outputs=answer_output)
demo.launch()