Spaces:
Sleeping
Sleeping
File size: 1,142 Bytes
c9d9b06 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
from langchain.document_loaders import PyPDFLoader
from langchain_together.embeddings import TogetherEmbeddings
import faiss
import os
import time
import numpy as np
import pickle
os.environ["TOGETHER_API_KEY"] = st.secrets["together_api_key"]
embeddings = TogetherEmbeddings(model="togethercomputer/m2-bert-80M-8k-retrieval")
loader = PyPDFLoader("ship.pdf")
data = loader.load()
print (f'You have {len(data)} document(s) in your data')
print (f'There are {len(data[0].page_content)} characters in your sample document')
print (f'Here is a sample: {data[0].page_content}')
list_of_texts = []
list_of_embeddings = []
for val in data:
text_content = val.page_content
list_of_texts.append(text_content)
embedding_vector = embeddings.embed_query(text_content)
list_of_embeddings.append(embedding_vector)
embeddings_array = np.array(list_of_embeddings).astype('float32')
d = len(list_of_embeddings[0])
index = faiss.IndexFlatL2(d)
index.add(embeddings_array)
# Save the index
faiss.write_index(index, "faiss.index")
# Save the list of texts
with open("list_of_texts.pkl", 'wb') as f:
pickle.dump(list_of_texts, f)
|