File size: 16,797 Bytes
57a1960
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2644a0
57a1960
 
 
 
 
 
 
 
 
 
a5305ac
 
 
 
 
57a1960
 
 
a5305ac
57a1960
 
a5305ac
57a1960
 
a5305ac
57a1960
 
a5305ac
57a1960
 
 
a5305ac
57a1960
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8921d85
0f27f95
95a7ca7
 
 
 
 
 
 
 
0f27f95
23c99aa
0f27f95
 
95a7ca7
 
57a1960
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5305ac
57a1960
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5cecd5
57a1960
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1786865
57a1960
 
 
 
 
 
 
 
1786865
57a1960
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f1727d
57a1960
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
import gradio as gr
import numpy as np
import os
import json
import subprocess
from PIL import Image
from functools import partial
from datetime import datetime
from sam_inference import get_sam_predictor, sam_seg
from utils import blend_seg, blend_seg_pure
import cv2
import uuid
import torch
import trimesh
from huggingface_hub import snapshot_download

from gradio_model3dcolor import Model3DColor
# from gradio_model3dnormal import Model3DNormal

code_dir = snapshot_download("sudo-ai/MeshFormer-API", token=os.environ['HF_TOKEN'])

with open(f'{code_dir}/api.json', 'r') as file:
    api_dict = json.load(file)
    SEG_CMD = api_dict["SEG_CMD"]
    MESH_CMD = api_dict["MESH_CMD"]

STYLE = """
    <link href="https://cdn.jsdelivr.net/npm/[email protected]/dist/css/bootstrap.min.css" rel="stylesheet" integrity="sha384-T3c6CoIi6uLrA9TneNEoa7RxnatzjcDSCmG1MXxSR1GAsXEV/Dwwykc2MPK8M2HN" crossorigin="anonymous">
    <style>
        .alert, .alert div, .alert b {
            color: black !important;
        }
    </style>
"""
# info (info-circle-fill), cursor (hand-index-thumb), wait (hourglass-split), done (check-circle)
ICONS = {
    "info": """<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="#0d6efd" class="bi bi-info-circle-fill flex-shrink-0 me-2" viewBox="0 0 16 16">
    <path d="M8 16A8 8 0 1 0 8 0a8 8 0 0 0 0 16zm.93-9.412-1 4.705c-.07.34.029.533.304.533.194 0 .487-.07.686-.246l-.088.416c-.287.346-.92.598-1.465.598-.703 0-1.002-.422-.808-1.319l.738-3.468c.064-.293.006-.399-.287-.47l-.451-.081.082-.381 2.29-.287zM8 5.5a1 1 0 1 1 0-2 1 1 0 0 1 0 2z"/>
    </svg>""",
    "cursor": """<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="#0dcaf0" class="bi bi-hand-index-thumb-fill flex-shrink-0 me-2" viewBox="0 0 16 16">
    <path d="M8.5 1.75v2.716l.047-.002c.312-.012.742-.016 1.051.046.28.056.543.18.738.288.273.152.456.385.56.642l.132-.012c.312-.024.794-.038 1.158.108.37.148.689.487.88.716.075.09.141.175.195.248h.582a2 2 0 0 1 1.99 2.199l-.272 2.715a3.5 3.5 0 0 1-.444 1.389l-1.395 2.441A1.5 1.5 0 0 1 12.42 16H6.118a1.5 1.5 0 0 1-1.342-.83l-1.215-2.43L1.07 8.589a1.517 1.517 0 0 1 2.373-1.852L5 8.293V1.75a1.75 1.75 0 0 1 3.5 0z"/>
    </svg>""",
    "wait": """<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="#6c757d" class="bi bi-hourglass-split flex-shrink-0 me-2" viewBox="0 0 16 16">
    <path d="M2.5 15a.5.5 0 1 1 0-1h1v-1a4.5 4.5 0 0 1 2.557-4.06c.29-.139.443-.377.443-.59v-.7c0-.213-.154-.451-.443-.59A4.5 4.5 0 0 1 3.5 3V2h-1a.5.5 0 0 1 0-1h11a.5.5 0 0 1 0 1h-1v1a4.5 4.5 0 0 1-2.557 4.06c-.29.139-.443.377-.443.59v.7c0 .213.154.451.443.59A4.5 4.5 0 0 1 12.5 13v1h1a.5.5 0 0 1 0 1h-11zm2-13v1c0 .537.12 1.045.337 1.5h6.326c.216-.455.337-.963.337-1.5V2h-7zm3 6.35c0 .701-.478 1.236-1.011 1.492A3.5 3.5 0 0 0 4.5 13s.866-1.299 3-1.48V8.35zm1 0v3.17c2.134.181 3 1.48 3 1.48a3.5 3.5 0 0 0-1.989-3.158C8.978 9.586 8.5 9.052 8.5 8.351z"/>
    </svg>""",
    "done": """<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="#198754" class="bi bi-check-circle-fill flex-shrink-0 me-2" viewBox="0 0 16 16">
    <path d="M16 8A8 8 0 1 1 0 8a8 8 0 0 1 16 0zm-3.97-3.03a.75.75 0 0 0-1.08.022L7.477 9.417 5.384 7.323a.75.75 0 0 0-1.06 1.06L6.97 11.03a.75.75 0 0 0 1.079-.02l3.992-4.99a.75.75 0 0 0-.01-1.05z"/>
    </svg>""",
}

icons2alert = {
    "info": "primary",  # blue
    "cursor": "info",  # light blue
    "wait": "secondary",  # gray
    "done": "success",  # green
}


def message(text, icon_type="info"):
    return f"""{STYLE}  <div class="alert alert-{icons2alert[icon_type]} d-flex align-items-center" role="alert"> {ICONS[icon_type]}
                            <div> 
                                {text} 
                            </div>
                        </div>"""


def preprocess(tmp_dir, input_img, idx=None):
    if idx is not None:
        print("image idx:", int(idx))
        input_img = Image.open(input_img[int(idx)]["name"])
    input_img.save(f"{tmp_dir}/input.png")
    # print(SEG_CMD.format(tmp_dir=tmp_dir))
    os.system(SEG_CMD.format(tmp_dir=tmp_dir))
    processed_img = Image.open(f"{tmp_dir}/seg.png")
    return processed_img.resize((320, 320), Image.Resampling.LANCZOS)


def ply_to_glb(ply_path):
    result = subprocess.run(
        ["python", "ply2glb.py", "--", ply_path],
        capture_output=True,
        text=True,
    )

    print("Output of blender script:")
    print(result.stdout)

    glb_path = ply_path.replace(".ply", ".glb")
    return glb_path


def mesh_gen(tmp_dir, simplify, num_inference_steps):
    # print(MESH_CMD.format(tmp_dir=tmp_dir, num_inference_steps=num_inference_steps))
    os.system(MESH_CMD.format(tmp_dir=tmp_dir, num_inference_steps=num_inference_steps))

    mesh = trimesh.load_mesh(f"{tmp_dir}/mesh.ply")
    vertex_normals = mesh.vertex_normals
    theta = np.radians(-90)  # Rotation angle in radians
    # Create rotation matrix
    cos_theta = np.cos(theta)
    sin_theta = np.sin(theta)
    rotation_matrix = np.array([
        [cos_theta, -sin_theta, 0],
        [sin_theta, cos_theta, 0],
        [0, 0, 1]
    ])
    rotated_normal = np.dot(vertex_normals, rotation_matrix.T)
    # rotated_normal = rotated_normal / np.linalg.norm(rotated_normal)
    colors = (-rotated_normal + 1) / 2.0
    # colors = (-vertex_normals + 1) / 2.0
    colors = (colors * 255).clip(0, 255).astype(np.uint8)  # Convert to 8-bit color
    # print(colors.shape)
    mesh.visual.vertex_colors = colors[..., [2, 1, 0]]  # RGB -> BGR
    mesh.export(f"{tmp_dir}/mesh_normal.ply", file_type="ply")

    color_path = ply_to_glb(f"{tmp_dir}/mesh.ply")
    normal_path = ply_to_glb(f"{tmp_dir}/mesh_normal.ply")

    return color_path, normal_path


def create_tmp_dir():
    tmp_dir = (
        "demo_exp/"
        + datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
        + "_"
        + str(uuid.uuid4())[:4]
    )
    os.makedirs(tmp_dir, exist_ok=True)
    print("create tmp_exp_dir", tmp_dir)
    return tmp_dir


def vis_seg(checkbox):
    if checkbox:
        print("Show manual seg windows")
        return (
            [gr.Image(value=None, visible=True)] * 2
            + [gr.Radio(visible=True)]
            + [[], gr.Checkbox(visible=True)]
        )
    else:
        print("Clear manual seg")
        return (
            [gr.Image(visible=False)] * 2
            + [gr.Radio(visible=False)]
            + [[], gr.Checkbox(visible=False)]
        )


def calc_feat(checkbox, predictor, input_image, idx=None):
    if checkbox:
        if idx is not None:
            print("image idx:", int(idx))
            input_image = Image.open(input_image[int(idx)]["name"])
        input_image.thumbnail([512, 512], Image.Resampling.LANCZOS)
        w, h = input_image.size
        print("image size:", w, h)
        side_len = np.max((w, h))
        seg_in = Image.new(input_image.mode, (side_len, side_len), (255, 255, 255))
        seg_in.paste(
            input_image, (np.max((0, (h - w) // 2)), np.max((0, (w - h) // 2)))
        )
        print("Calculating image SAM feature...")
        predictor.set_image(np.array(seg_in.convert("RGB")))
        torch.cuda.empty_cache()
        return gr.Image(value=seg_in, visible=True)
    else:
        print("Quit manual seg")
        raise ValueError("Quit manual seg")


def manual_seg(
    predictor,
    seg_in,
    selected_points,
    fg_bg_radio,
    tmp_dir,
    seg_mask_opt,
    evt: gr.SelectData,
):
    print("Start segmentation")
    selected_points.append(
        {"coord": evt.index, "add_del": fg_bg_radio == "+ (add mask)"}
    )
    input_points = np.array([point["coord"] for point in selected_points])
    input_labels = np.array([point["add_del"] for point in selected_points])
    out_image = sam_seg(
        predictor, np.array(seg_in.convert("RGB")), input_points, input_labels
    )

    # seg_in.save(f"{tmp_dir}/in.png")
    # out_image.save(f"{tmp_dir}/out.png")
    if seg_mask_opt:
        segmentation = blend_seg_pure(
            seg_in.convert("RGB"), out_image, input_points, input_labels
        )
    else:
        segmentation = blend_seg(
            seg_in.convert("RGB"), out_image, input_points, input_labels
        )

    # recenter and rescale
    image_arr = np.array(out_image)
    ret, mask = cv2.threshold(
        np.array(out_image.split()[-1]), 0, 255, cv2.THRESH_BINARY
    )
    x, y, w, h = cv2.boundingRect(mask)
    max_size = max(w, h)
    ratio = 0.75
    side_len = int(max_size / ratio)
    padded_image = np.zeros((side_len, side_len, 4), dtype=np.uint8)
    center = side_len // 2
    padded_image[
        center - h // 2 : center - h // 2 + h, center - w // 2 : center - w // 2 + w
    ] = image_arr[y : y + h, x : x + w]
    rgba = Image.fromarray(padded_image)
    rgba.save(f"{tmp_dir}/seg.png")
    torch.cuda.empty_cache()

    return segmentation.resize((380, 380), Image.Resampling.LANCZOS), rgba.resize(
        (320, 320), Image.Resampling.LANCZOS
    )


custom_theme = gr.themes.Soft(primary_hue="blue").set(
    button_secondary_background_fill="*neutral_100",
    button_secondary_background_fill_hover="*neutral_200",
)

with gr.Blocks(title="MeshFormer Demo", css="style.css", theme=custom_theme) as demo:
    with gr.Row():
        gr.Markdown(
            "# MeshFormer: High-Quality Mesh Generation with 3D-Guided Reconstruction Model"
        )
    with gr.Row():
        gr.Markdown(
            "[Project Page](https://meshformer3d.github.io/) | [arXiv](https://arxiv.org/pdf/2408.10198)"
        )
    with gr.Row():
        gr.Markdown(
            """
<div>
<b><em>Check out <a href="https://www.sudo.ai/3dgen">Hillbot (sudoAI)</a> for more details and advanced features.</em></b>
</div>
"""
        )
    with gr.Row():
        guide_text_i2m = gr.HTML(message("Please input an image!"), visible=True)

    tmp_dir_img = gr.State("./demo_exp/placeholder")
    tmp_dir_txt = gr.State("./demo_exp/placeholder")
    tmp_dir_3t3 = gr.State("./demo_exp/placeholder")

    example_folder = os.path.join(os.path.dirname(__file__), "demo_examples")
    example_fns = os.listdir(example_folder)
    example_fns.sort()
    img_examples = [
        os.path.join(example_folder, x) for x in example_fns
    ]  # if x.endswith('.png') or x.endswith('.')

    with gr.Row(variant="panel"):
        with gr.Row():
            with gr.Column(scale=8):
                input_image = gr.Image(
                    type="pil",
                    image_mode="RGBA",
                    height=320,
                    label="Input Image",
                    interactive=True,
                )
                gr.Examples(
                    examples=img_examples,
                    inputs=[input_image],
                    outputs=[input_image],
                    cache_examples=False,
                    label="Image Examples (Click one of the images below to start)",
                    examples_per_page=27,
                )
                with gr.Accordion("Options", open=False):
                    img_simplify = gr.Checkbox(
                        False, label="simplify the generated mesh", visible=False
                    )
                    n_steps_img = gr.Slider(
                        value=28,
                        minimum=15,
                        maximum=100,
                        step=1,
                        label="number of inference steps",
                    )
                # manual segmentation
                checkbox_manual_seg = gr.Checkbox(False, label="manual segmentation")
                with gr.Row():
                    with gr.Column(scale=1):
                        seg_in = gr.Image(
                            type="pil",
                            image_mode="RGBA",
                            label="Click to segment",
                            visible=False,
                            show_download_button=False,
                            height=380,
                        )
                    with gr.Column(scale=1):
                        seg_out = gr.Image(
                            type="pil",
                            image_mode="RGBA",
                            label="Segmentation",
                            interactive=False,
                            visible=False,
                            show_download_button=False,
                            height=380,
                            elem_id="disp_image",
                        )
                fg_bg_radio = gr.Radio(
                    ["+ (add mask)", "- (remove area)"],
                    value="+ (add mask)",
                    info="Select foreground (+) or background (-) point",
                    label="Point label",
                    visible=False,
                    interactive=True,
                )
                seg_mask_opt = gr.Checkbox(
                    True,
                    label="show foreground mask in manual segmentation",
                    visible=False,
                )
                # run
                img_run_btn = gr.Button(
                    "Generate", variant="primary", interactive=False
                )
            with gr.Column(scale=6):
                processed_image = gr.Image(
                    type="pil",
                    label="Processed Image",
                    interactive=False,
                    height=320,
                    image_mode="RGBA",
                    elem_id="disp_image",
                )
                # with gr.Row():
                # mesh_output = gr.Model3D(label="Generated Mesh", elem_id="model-3d-out")
                mesh_output_normal = Model3DColor(
                    label="Generated Mesh (normal)",
                    elem_id="mesh-normal-out",
                    height=400,
                )
                mesh_output = Model3DColor(
                    label="Generated Mesh (color)",
                    elem_id="mesh-out",
                    height=400,
                )

    predictor = gr.State(value=get_sam_predictor())
    selected_points = gr.State(value=[])
    selected_points_t2i = gr.State(value=[])

    disable_checkbox = lambda: gr.Checkbox(value=False)
    disable_button = lambda: gr.Button(interactive=False)
    enable_button = lambda: gr.Button(interactive=True)
    update_guide = lambda GUIDE_TEXT, icon_type="info": gr.HTML(
        value=message(GUIDE_TEXT, icon_type)
    )
    update_md = lambda GUIDE_TEXT: gr.Markdown(value=GUIDE_TEXT)

    def is_img_clear(input_image):
        if not input_image:
            raise ValueError("Input image cleared.")

    checkbox_manual_seg.change(
        vis_seg,
        inputs=[checkbox_manual_seg],
        outputs=[seg_in, seg_out, fg_bg_radio, selected_points, seg_mask_opt],
        queue=False,
    ).success(
        calc_feat,
        inputs=[checkbox_manual_seg, predictor, input_image],
        outputs=[seg_in],
        queue=True,
    ).success(
        fn=create_tmp_dir, outputs=[tmp_dir_img], queue=False
    )

    seg_in.select(
        manual_seg,
        [predictor, seg_in, selected_points, fg_bg_radio, tmp_dir_img, seg_mask_opt],
        [seg_out, processed_image],
        queue=True,
    )

    input_image.change(disable_button, outputs=img_run_btn, queue=False).success(
        disable_checkbox, outputs=checkbox_manual_seg, queue=False
    ).success(fn=is_img_clear, inputs=input_image, queue=False).success(
        fn=create_tmp_dir, outputs=tmp_dir_img, queue=False
    ).success(
        fn=partial(update_guide, "Preprocessing the image!", "wait"),
        outputs=[guide_text_i2m],
        queue=False,
    ).success(
        fn=preprocess,
        inputs=[tmp_dir_img, input_image],
        outputs=[processed_image],
        queue=True,
    ).success(
        fn=partial(
            update_guide,
            "Click <b>Generate</b> to generate mesh! If the input image was not segmented accurately, please adjust it using <b>manual segmentation</b>.",
            "cursor",
        ),
        outputs=[guide_text_i2m],
        queue=False,
    ).success(
        enable_button, outputs=img_run_btn, queue=False
    )

    img_run_btn.click(
        fn=partial(update_guide, "Generating the mesh!", "wait"),
        outputs=[guide_text_i2m],
        queue=False,
    ).success(
        fn=mesh_gen,
        inputs=[tmp_dir_img, img_simplify, n_steps_img],
        outputs=[mesh_output, mesh_output_normal],
        queue=True,
    ).success(
        fn=partial(
            update_guide,
            "Successfully generated the mesh. (It might take a few seconds to load the mesh)",
            "done",
        ),
        outputs=[guide_text_i2m],
        queue=False,
    )

demo.queue().launch(
    debug=False, share=False, inline=False, show_api=False, server_name="0.0.0.0"
)