|
import streamlit as st |
|
from PIL import Image |
|
from transformers import AutoProcessor, AutoModelForCausalLM, AutoConfig |
|
|
|
import subprocess |
|
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) |
|
|
|
|
|
@st.cache_resource |
|
def load_model_and_processor(): |
|
config = AutoConfig.from_pretrained("microsoft/Florence-2-base-ft", trust_remote_code=True) |
|
config.vision_config.model_type = "davit" |
|
model = AutoModelForCausalLM.from_pretrained("sujet-ai/Lutece-Vision-Base", config=config, trust_remote_code=True).eval() |
|
processor = AutoProcessor.from_pretrained("sujet-ai/Lutece-Vision-Base", config=config, trust_remote_code=True) |
|
return model, processor |
|
|
|
|
|
def generate_answer(model, processor, image, prompt): |
|
task = "<FinanceQA>" |
|
inputs = processor(text=prompt, images=image, return_tensors="pt") |
|
generated_ids = model.generate( |
|
input_ids=inputs["input_ids"], |
|
pixel_values=inputs["pixel_values"], |
|
max_new_tokens=1024, |
|
do_sample=False, |
|
num_beams=3, |
|
) |
|
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0] |
|
parsed_answer = processor.post_process_generation(generated_text, task=task, image_size=(image.width, image.height)) |
|
return parsed_answer[task] |
|
|
|
|
|
def main(): |
|
st.set_page_config(page_title="Lutece-Vision-Base Demo", page_icon="πΌ", layout="wide", initial_sidebar_state="expanded") |
|
|
|
|
|
st.title("πΌ Lutece-Vision-Base Demo") |
|
st.markdown("Upload a financial document and ask questions about it!") |
|
|
|
|
|
st.sidebar.image("sujetAI.svg", use_column_width=True) |
|
st.sidebar.markdown("---") |
|
st.sidebar.markdown("Our website : [sujet.ai](https://sujet.ai)") |
|
|
|
|
|
model, processor = load_model_and_processor() |
|
|
|
|
|
uploaded_file = st.file_uploader("π Upload a financial document", type=["png", "jpg", "jpeg"]) |
|
|
|
if uploaded_file is not None: |
|
image = Image.open(uploaded_file).convert('RGB') |
|
|
|
|
|
col1, col2 = st.columns(2) |
|
|
|
with col1: |
|
|
|
st.image(image, caption="Uploaded Document", use_column_width=True) |
|
|
|
with col2: |
|
|
|
question = st.text_input("β Ask a question about the document", "") |
|
submit_button = st.button("π Generate Answer") |
|
|
|
|
|
if submit_button and question: |
|
with st.spinner("Generating answer..."): |
|
answer = generate_answer(model, processor, image, question) |
|
st.success("Answer generated!") |
|
st.markdown(f"## π‘ Answer") |
|
st.markdown(answer) |
|
|
|
if __name__ == "__main__": |
|
main() |