File size: 4,219 Bytes
e6ecdf3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import numpy as np
import torch
import torch.nn as nn


class Anchors(nn.Module):
    def __init__(self, pyramid_levels=None, strides=None, sizes=None, ratios=None, scales=None):
        super(Anchors, self).__init__()

        if pyramid_levels is None:
            self.pyramid_levels = [3, 4, 5, 6, 7]
        if strides is None:
            self.strides = [2 ** x for x in self.pyramid_levels]
        if sizes is None:
            self.sizes = [2 ** (x + 2) for x in self.pyramid_levels]
        if ratios is None:
            self.ratios = np.array([0.5, 1, 2])
        if scales is None:
            self.scales = np.array([2 ** 0, 2 ** (1.0 / 3.0), 2 ** (2.0 / 3.0)])

    def forward(self, image):
        
        image_shape = image.shape[2:]
        image_shape = np.array(image_shape)
        image_shapes = [(image_shape + 2 ** x - 1) // (2 ** x) for x in self.pyramid_levels]

        # compute anchors over all pyramid levels
        all_anchors = np.zeros((0, 4)).astype(np.float32)

        for idx, p in enumerate(self.pyramid_levels):
            anchors         = generate_anchors(base_size=self.sizes[idx], ratios=self.ratios, scales=self.scales)
            shifted_anchors = shift(image_shapes[idx], self.strides[idx], anchors)
            all_anchors     = np.append(all_anchors, shifted_anchors, axis=0)

        all_anchors = np.expand_dims(all_anchors, axis=0)

        if torch.cuda.is_available():
            return torch.from_numpy(all_anchors.astype(np.float32)).cuda()
        else:
            return torch.from_numpy(all_anchors.astype(np.float32))

def generate_anchors(base_size=16, ratios=None, scales=None):
    """
    Generate anchor (reference) windows by enumerating aspect ratios X
    scales w.r.t. a reference window.
    """

    if ratios is None:
        ratios = np.array([0.5, 1, 2])

    if scales is None:
        scales = np.array([2 ** 0, 2 ** (1.0 / 3.0), 2 ** (2.0 / 3.0)])

    num_anchors = len(ratios) * len(scales)

    # initialize output anchors
    anchors = np.zeros((num_anchors, 4))

    # scale base_size
    anchors[:, 2:] = base_size * np.tile(scales, (2, len(ratios))).T

    # compute areas of anchors
    areas = anchors[:, 2] * anchors[:, 3]

    # correct for ratios
    anchors[:, 2] = np.sqrt(areas / np.repeat(ratios, len(scales)))
    anchors[:, 3] = anchors[:, 2] * np.repeat(ratios, len(scales))

    # transform from (x_ctr, y_ctr, w, h) -> (x1, y1, x2, y2)
    anchors[:, 0::2] -= np.tile(anchors[:, 2] * 0.5, (2, 1)).T
    anchors[:, 1::2] -= np.tile(anchors[:, 3] * 0.5, (2, 1)).T

    return anchors

def compute_shape(image_shape, pyramid_levels):
    """Compute shapes based on pyramid levels.

    :param image_shape:
    :param pyramid_levels:
    :return:
    """
    image_shape = np.array(image_shape[:2])
    image_shapes = [(image_shape + 2 ** x - 1) // (2 ** x) for x in pyramid_levels]
    return image_shapes


def anchors_for_shape(
    image_shape,
    pyramid_levels=None,
    ratios=None,
    scales=None,
    strides=None,
    sizes=None,
    shapes_callback=None,
):

    image_shapes = compute_shape(image_shape, pyramid_levels)

    # compute anchors over all pyramid levels
    all_anchors = np.zeros((0, 4))
    for idx, p in enumerate(pyramid_levels):
        anchors         = generate_anchors(base_size=sizes[idx], ratios=ratios, scales=scales)
        shifted_anchors = shift(image_shapes[idx], strides[idx], anchors)
        all_anchors     = np.append(all_anchors, shifted_anchors, axis=0)

    return all_anchors


def shift(shape, stride, anchors):
    shift_x = (np.arange(0, shape[1]) + 0.5) * stride
    shift_y = (np.arange(0, shape[0]) + 0.5) * stride

    shift_x, shift_y = np.meshgrid(shift_x, shift_y)

    shifts = np.vstack((
        shift_x.ravel(), shift_y.ravel(),
        shift_x.ravel(), shift_y.ravel()
    )).transpose()

    # add A anchors (1, A, 4) to
    # cell K shifts (K, 1, 4) to get
    # shift anchors (K, A, 4)
    # reshape to (K*A, 4) shifted anchors
    A = anchors.shape[0]
    K = shifts.shape[0]
    all_anchors = (anchors.reshape((1, A, 4)) + shifts.reshape((1, K, 4)).transpose((1, 0, 2)))
    all_anchors = all_anchors.reshape((K * A, 4))

    return all_anchors